Supplemental Document

Nanoscale Investigation of N-Heterocyclic Carbene Monolayers on Metal Surfaces

F. Tumino^{1,3}, E. DesRoche^{2,3}, M. D. Aloisio^{1,3}, D. Nanan^{1,3}, A. B. McLean^{2,3}, C. M. Crudden^{1,3}

¹Department of Chemistry, Queen's University, Kingston, ON

²Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON

³Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON

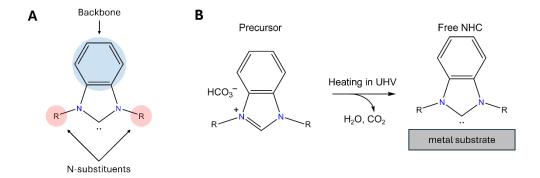


Figure 1. (A) Chemical structure of a N-heterocycle carbene (NHC), highlighting the backbone structure and N-substituent groups. (B) Schematics of the deposition process. The hydrogen carbonate precursor is converted into a free NHC when heated in vacuum.

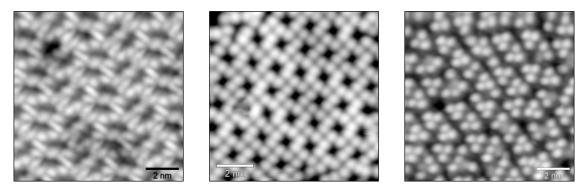


Figure 2. High resolution STM images showing different self-assembly patterns formed on Cu(111) by NHCs with different N-substituents. The images have been acquired at 77 K in constant-current mode.