Two-dimensional magnetic monopole gas in oxide heterostructures

P. Timsina, ¹ <u>L. Miao</u> ¹, and K.M. Shen ²

¹ Department of Physics, New Mexico State University, Las Cruces, NM, USA

² Department of Physics, Cornell University, Ithaca, NY, USA

Magnetic monopoles in spin ice emerge as fractionalized excitations of the underlying spin configuration [1]. However, in bulk spin ice, the populations of monopoles and antimonopoles are always equal, resulting in zero net magnetic charge.

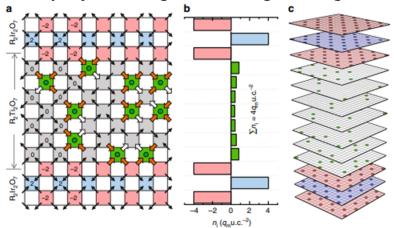


Figure 1. **a**. 2D illustration of a static snapshot of a 2DMG in a spin ice R₂Ti₂O₇ slab sandwiched between two AFM R₂Ir₂O₇ slabs with the boundary moments terminated to be pointing toward the R₂Ti₂O₇ slab. **b**. A depth profile of the monopole distribution taken from the average of snapshots, and **c**. an example of the snapshot of monopole from the ground state.

Here we demonstrate a two-dimensional magnetic monopole (2DMG) gas formed at a spin ice/antiferromagnet (AFM) interface, using Monte Carlo simulation [2]. Unlike the bulk case, this interfacial monopole gas exhibits a non-zero net charge arising from the boundary conditions. We show that a singly charged monopole gas can exist in an AFM/spin ice/AFM sandwich heterostructure, as shown in Fig. 1. Although monopole motion within the spin ice layer costs no energy, the monopoles preferentially accumulate near the AFM/spin ice interface due to entropy maximization [3]. Furthermore, we demonstrate that this charged monopole gas enables novel functionalities: (1) it can be manipulated by external magnetic fields, functioning analogously to a field-effect transistor [2], and (2) engineered monopole traps can store non-volatile magnetic information, with the monopole position serving as a binary state that can be read and written magnetically [4].

- [1] C. Castelnovo, R. Moessner, and S.L. Sondhi, Nature 451, 42 (2008).
- [2] L. Miao, Y. Lee, A.B. Mei, M.J. Lawler, and K.M. Shen Nat. Commun. 11, 1341 (2020).
- [3] P. Timsina, B. Kiefer, L. Miao, Phys. Rev. B 110, 184420 (2024).
- [4] P. Timsina, A. Chappa, D. Alyones, B. Kiefer, L. Miao, arXiv: 2507.22315 (2025).