Investigating the Dust Mitigation Abilities of Dissociative Degradation

K. SAND,¹+ A. STAPLEY,¹ M. CLARKSON,¹ M. STRADLING,¹ M. PETERSON,¹ J. J. VAWDREY,¹ O. D. AMIENGHEMHEN,² T. SASAKI,³ D. D. ALLRED,¹ W. F. PAXTON²

Particulate contamination requires dust mitigation techniques to provide low-scatter surfaces on sensitive instrumentation in space. We have previously shown that poly(olefin sulfone)s photodegrade in spacelike conditions: in vacuum and with UV light exposure. We now demonstrate that photodegradable polymers can reduce dust accumulation on optical surfaces for space applications. Our research shows that dissociative degradation of poly(olefin sulfone)s significantly decreased the number of dust particles on a dust-coated surface. Our findings show a viable way to mitigate the collection of extraterrestrial dust on optical

Our findings show a viable way to mitigate the collection of extraterrestrial dust on optical surfaces in space, enabling passive removal of particulate contamination without any direct human intervention.

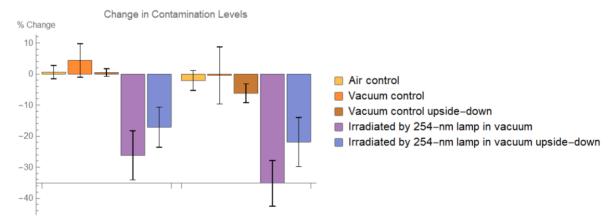
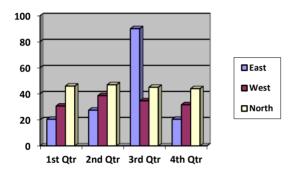
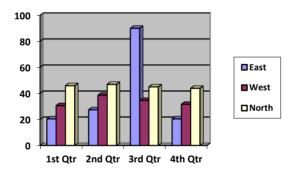


Figure 1. Relative change in number of particles or percent area coverage (PAC) on PMPS thin film samples and controls. Each color represents a different experimental group. Each bar represents the average of all the samples in an experimental group, and the error bars represent the corresponding standard error. The data on the left is calculated based on the change in particle count. The data on the right represents the percent change in percent area coverage (PAC).

¹ IDepartment of Physics, Brigham Young University, N 283 Carl F. Eyring Science Center, Provo. UT. 84604 USA


²Department of Chemistry and Biochemistry, Brigham Young University, C100 Ezra Taft Benson Building, Provo, UT 84604, USA


³Tokyo University of Science 1 Chome-3 Kagurazaka, Shinjuku City, Tokyo 162-8601, Japan

⁺ Author for correspondence: brooksk1@byu.edu

Suplementary Pages

More optional text and figures may be submitted on up to two supplemental pages; however, please note that these pages will not be included in the online technical program book. Therefore please do not reference any text or figures from these pages on page one.

