Orientated Deposition of Li₂S for Fast-Charging Lithium-Sulfur Batteries

J.-H. Yu, 1 D. Lee, 1 J.-S. Yu^{1,2+}

¹ Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea.

Precipitation/dissolution of insulating Li₂S has long been recognized as the rate-determining step in lithium–sulfur (Li–S) batteries, which dramatically undermines sulfur utilization at elevated charging rates. Herein, we present an orientated Li₂S deposition strategy to achieve extreme fast charging (XFC, \leq 15 min) through synergistic control of porosity, electronic conductivity, and anchoring sites of electrode substrate [1]. Via magnesiothermic reduction of a zeolitic imidazolate framework, a nitrogen-doped and hierarchical porous carbon with highly graphitic phase was developed. This design effectively reduces interfacial resistance and ensures efficient sequestration of polysulfides during deposition, leading to (110)-preferred growth of Li₂S nanocrystalline between (002)-dominated graphitic layers. Our approach directs an alternative Li₂S deposition pathway to the commonly reported lateral growth and 3D thickening growth mode, ameliorating the electrode passivation. Therefore,

a Li-S cell capable of charging/discharging at 5C (12 min) while maintaining excellent cycling stability (82% capacity retention) for 1000 cycles is demonstrated. Even under high S loading (8.3 mg cm^{-2}) and low electrolyte/sulfur ratio $(3.8 \mu L mg^{-1})$, sulfur cathode the still delivers a high areal capacity of >7 cm^{-2} for mAh cycles.

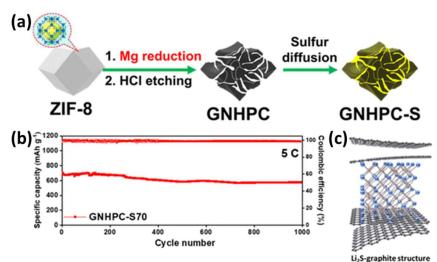


Figure 1. (a) A schematic illustration of synthetic procedures for carbon host and sulfur loading. (b) Long-term cycling performance of the GNHPC-S70 at a high current density of 5 C for 1000 cycles. (c) A schematic illustration showing the expansion of graphite layer and intergrowth structure, facilitating both ionic/electronic conductivity.

[1] J.-H. Yu, B.-J. Lee, S. Zhou, J. H. Sung, C. Zhao, C.-H. Shin, B. Yu, G.-L. Xu, K. Amine and J.-S. Yu, ACS Nano 18, 31974. (2024).

² UE Science Inc., 66 Inan-gil, Gaejin-myeon, Goryeong-gun, Gyeongsangbuk-do, 40150 Republic of Korea.

⁺ Author for correspondence: jsyu@dgist.ac.kr