Strong Fermi-level Pinning Driven by Epitaxial Graphene Interlayer in Metal/4H-SiC Junction

Eunseok Hyun,¹ Jungjae Park,¹ Junhyung Kim,² Jaehyeong Jo,¹ Jiwan Kim,¹ Hyunjae Park,¹ Kibog Park,^{1,3+}

¹ Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

Fermi-level pinning is a phenomenon that the Schottky barrier of metal/semiconductor junction exhibits weak dependence on the metal work-function. According to the previous study [1], the metal/graphene/Si junction exhibits strong Fermi-level pinning which is expected on an ideal metal/Si junction. It has been reported that the Fermi-level pinning of metal/SiC junction is relatively weak compared with the metal/Si junction due to the ionicity between atomic elements of crystalline structure [2]. With this background, we investigated the Fermi-level pinning in metal/graphene/4H-SiC junctions. The junction was fabricated by first epitaxially growing graphene on a 4H-SiC substrate with the metal-capping method under UHV environment [3] and then depositing circular metal (Al, Ni, Pt) electrodes onto the grown graphene layer. The Fermi-level pinning factor S was extracted from current-voltage (I-V) and capacitance-voltage (C-V) curves, signifying strong Fermi-level pinning. A theoretical model proposed by Kopylov *et al.* describing the charge transfer at the graphene/SiC interface provides a plausible explanation for the observed strong Fermi-level pinning [4].

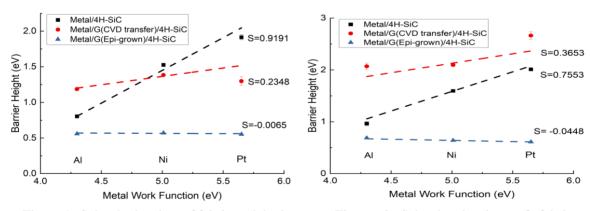


Figure 1 Schottky barriers of fabricated devices obtained from I-V measurements vs. metal work-function

Figure 2 Schottky barriers of fabricated devices obtained from C-V measurements *vs.* metal work-function

- [1] Hoon Hahn Yoon et al., Nano Letters **17(1)**, 44 (2017)
- [2] Stephen Kurtin, T. C. McGill, and C. A. Mead, Physical Review Letters 22, 1433 (1969)
- [3] Han Byul Jin et al., Scientific Reports 5, 9615 (2015)
- [4] Sergey Kopylov et al., Applied Physics Letters 97, 112109 (2010)

² Terrestrial and Non-Terrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea ³ Department of Electrical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

⁺ Author for correspondence: kibogpark@unist.ac.kr NRF-2023R1A2C1006519, NRF-2022M3K2A1083924