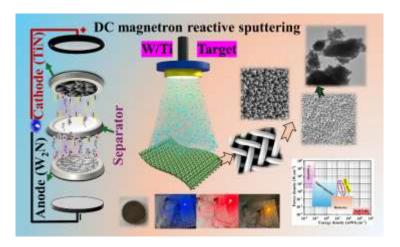
Porous W₂N Fibrous-Nanograins and TiN Nanopyramids Framework for High Energy Density Flexible Asymmetric Supercapacitors

Rajesh Kumar, Bhanu Ranjan, Davinder Kaur*

Functional Nanomaterials Research Laboratory (FNRL), Department of Physics, Indian Institute of Technology Roorkee (IIT-Roorkee), Uttarakhand, India.


*E-mail: davinder.kaur@ph.iitr.ac.in

Abstract: Enhancing the energy density of flexible asymmetric supercapacitors (ASCs) necessitates developing and implementing high-performance anode materials for technological developments in wearable energy storage systems. Tungsten nitride (W₂N) offers enormous potential as an anode material for ASCs, ascribed to its substantial specific capacitance, massive electrical conductivity, and extended negative potential window. In this work, we fabricated a durable coin cell and flexible ASC utilizing W₂N/SSM fibrous-nanograins anode and TiN/SSM nanopyramids cathode deposited over flexible stainless steel mesh (SSM) substrate by the DC magnetron sputtering technique. The W₂N/SSM//TiN/SSM ASC device demonstrates a high areal capacitance of 21.3 mF.cm⁻² operating across a wide and stable electrochemical voltage window of 1.3 V with outstanding cycling robustness demonstrating 89.09% retention over 8000 charge-discharge cycles. Notably, the ASC achieved a high energy density of 34.33 mWh.cm⁻³ and a high power density of 17.32 W.cm⁻³. The persistent electrochemical performance of ASC is mainly attributed to the dominance of surface-controlled capacitive and pseudocapacitive charge storage kinetics of W₂N/SSM for Na⁺ ions comprehensively examined employing 3D Bode and Dunn's techniques. The flexible ASC shows remarkable mechanical stability of 92.36% up to 500 bending cycles. This study establishes W₂N nanograin's potential as a high-energy anode material, revealing the capability to increase the effectiveness of ASC for portable and miniaturized energy storage devices.

References

1) Rajesh Kumar, Bhanu Ranjan, and Davinder Kaur. "Porous W₂N fibrous nanograins and TiN nanopyramid framework for high-energy density flexible asymmetric supercapacitors." *Applied Physics Letters* 126.13 (2025).

GRAPHICAL ABSTRACT

