Development of UV-C light Source in 180-190 nm Spectral Range using Rocksalt-structured MgZnO Alloys

<u>Takeyoshi Onuma</u>,^{1,+} Kotaro Ogawa,¹ Yuichi Ota,² Kentaro Kaneko,³ Tomohiro Yamaguchi,¹ Shizuo Fujita,⁴ and Tohru Honda¹

¹ Department of Applied Physics, School of Advanced Engineering and Department of Electrical Engineering and Electronics, Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan

² Department of Intelligent Robotics, Faculty of Information Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan

³ Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

⁴ Institutional Advancement and Communications, Kyoto University, Kyoto 606-8501, Japan

The Minamata Convention on Mercury is advancing the regulation of mercury products. However, low-pressure mercury lamp is exempted from the regulation. The 185 nm emission is widely utilized as a light source for oxygen dissociation, ozone generation, and OH radical production in water treatment, while the 254 nm emission is widely used for UV sterilization. Although AlGaN-based deep UV LEDs are becoming promising alternative to the 254 nm emission, almost no effort has been made to replace the 185 nm emission.

Behind the background, we have studied rocksalt (RS)-structured MgZnO alloys as candidate materials for UV-C emitters in 180-190 nm spectral range. Our group has reported growth of atomically-flat single crystalline RS-MgZnO films on MgO (100) substrates by using the mist chemical vapor deposition (mist CVD) method [1-3]. Observations of deep UV cathodoluminescence (CL) have been reported [1–6]. Post-growth slow-cooling process was used to improve the crystallinity and emission properties [7]. A near-band-edge emission was eventually achieved in the 187–223 nm spectral range at 300 K. Our group also succeeded in growing RS-MgZnO polycrystalline films on quartz glass substrates using the mist CVD [8]. The achievement brought us a demonstration of RS-MgZnO-based UV-C lamp emitting in 190-220 nm spectral range using 146 nm line of Kr₂* generated by dielectric barrier discharge as an excitation light source [9]. The progresses and recent achievements in growth of RS-MgZnO/MgO multiple quantum well structures will be discussed.

This work was supported in part by Grants-in-Aid for Scientific Research Nos. 17H01263, 20H00246, 22K04952, 25K08495, and 25KJ2089 from MEXT, Japan and The Canon Foundation. T.O. would like to thank Prof. S. F. Chichibu and Dr. K. Shima of Tohoku University for their help with time-resolved photoluminescence measurements. The RS-MgZnO-based UV-C lamp was developed as a joint research project between ORC Manufacturing Co., Ltd. and Kogakuin University.

[1] K. Kaneko *et al.*, Appl. Phys. Express **9**, 111102 (2016). [2] K. Kaneko *et al.*, J. Electron. Mater. **47**, 4356 (2018). [3] K. Ishii *et al.*, Appl. Phys. Express **12**, 052011 (2019). [4] T. Onuma *et al.*, Appl. Phys. Lett. **113**, 061903 (2018). [5] M. Ono *et al.*, J. Appl. Phys. **125**, 225108 (2019). [6] T. Onuma *et al.*, J. Appl. Phys. **134**, 025102 (2023). [7] K. Ogawa *et al.*, Jpn. J. Appl. Phys. **63**, 02SP30 (2024). [8] W. Kosaka *et al.*, Phys. Status Solidi B **259**, 2100354 (2021). [9] K. Ogawa *et al.*, Appl. Phys. Express **17**, 121001 (2024).

⁺ Author for correspondence: onuma@cc.kogakuin.ac.jp