Subsurface Nitrogen in Diamond (001)-2×1-H Studied by Density Functional Theory

Shicai Wang,^{1,2} Alon Hoffman,² Kai Huang¹

 ¹ Chemistry Program, Guangdong Technion- Israel Institute of Technology, Shantou, Guangdong Province 515063, China.
² Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel

To populate nitrogen centers in the near-surface region of diamond, there has been recent effort [1-3] of using activated dinitrogen to impact fully hydrogenated diamond surfaces as synthesized by chemical vapor deposition. There is implication [2-3] of nitrogen into the subsurface region (depth: 6 ± 5 Å) of the same diamond (001)-2x1-H by low energy N₂⁺ ions. It remains, however, unclear about the atomistic understanding into the configuration and bonding of the nitrogen species in the subsurface region of diamond (001)-2×1-H. Here, we present studies into subsurface nitrogen in diamond (001)-2x1-H by density functional theory simulations, revealing in each case information regarding structure, energy and vibration that depend on the atomistic coordination as detailed below.

1. Interstitial N_i Species. We have studied 10 configurations of a single interstitial nitrogen in the topmost 3 layers of diamond (001)-2x1-H. In all configurations, the carbon network is strongly distorted by an interstitial nitrogen atom, in which 2 carbon-carbon bonds are cleaved. The interstitial nitrogen is bound to 3 neighboring carbon atoms, of which one carbon becomes sp^2 hybridized. The stability of the interstitial configuration depends on the location of nitrogen and the direction of the formed $C(sp^2)$ -N bond, exhibiting formation energies of +4.83 to +11.04 eV. The most characteristic mode of vibration arises from the C(sp²)-N bond, i. e., stretch (1530 to 1901 cm⁻¹/ 189.7 to 235.8 meV) and swing (1101 to 1389 cm⁻¹/136.6 to 172.2 meV). Migration of nitrogen interstitial is also evaluated, involving a series of steps and intermediates; the rate determining step is of a barrier of 6.02 eV. 2. Substitutional N_s Species. We have also evaluated 3 configurations of a single substitutional nitrogen in the topmost 3 layers of diamond (001)-2x1-H. In all configurations, the carbon network is largely preserved, giving formation energy of +2.79 to +3.41 eV. The substitutional nitrogen is bound to four neighboring carbons, and the formed C-N bond is larger than a typical C-N single bond, giving the characteristic C-N swing vibration of 844 to 979 cm^{-1} (105 to 121 meV).

3. Dinitrogen N_{2i} **Species.** We have finally evaluated 6 configurations of a pair of nitrogen atoms in the topmost 3 layers of diamond (001)-2x1-H. Our computations were restricted to the N_{2i} species that mimics the encounter of an interstitial N_i and a substitutional N_s species. The formation energy depends on the location of N_{2i} and the direction of the formed N_i - N_s bond, ranging from +4.12 to +9.71 eV. The most characteristic motions of vibration arise from N-N stretch mode of 1419 cm⁻¹ (176.0 meV), C-N swing mode of 968 cm⁻¹ (120 meV) and N-N swing mode of 471 cm⁻¹ (58.5 meV).

[2] Kuntumalla, M. K., Gani, G., Fischer, M., & Hoffman, A. (2023). Surfaces and Interfaces, 37, 102649.

⁺ Author for correspondence: kai.huang@gtiit.edu.cn

^[1] Zheng, Y., Kuntumalla, M. K., Attrash, M., Hoffman, A., & Huang, K. (2021). *The Journal of Physical Chemistry C*, *125*(51), 28157-28161.

^[3] Kuntumalla, M. K., Fischer, M., & Hoffman, A. (2024). Surface Science, 739, 122399.