Diamond High Power and Voltage MOSFETs: Inch-Sized Wafer Growth, Doping, Static and Dynamic Characteristics

Makoto Kasu¹ and Niloy Chandra Saha¹

¹Depart. of Electrical and Electronic Engineering, Saga University, 840-8502 Saga, Japan

Diamond possesses an ultrawide bandgap energy of 5.47 eV, a breakdown field of >10 MV/cm), higher thermal conductivity (22 W/cmK), and higher electron and hole mobilities (4500 and 3800 cm²/Vs, respectively) than GaN and SiC. Therefore, diamond is considered to be the most capable candidate for the power semiconductor device application. Diamond single-crystal substrates have been limited to sizes of 4 mm. Diamond heteroepitaxial growth has not been achieved because of a large difference in coefficients of thermal expansion between diamond and foreign substrate materials. Recently, we have demonstrated a twoinch-diameter diamond wafer grown on Ir/sapphire (α -Al₂O₃) (11-20) substrate [1]. Diamond heteroepitaxial layer exhibited the highest crystal quality, such as TDD of 1.4×10^7 cm⁻², and XRC FWHM of 98 arcsec [2]. We clarified diamond's nucleation process on Ir/sapphire surface by AFM, TEM, and EDS [3]. For diamond p-channel MOSFETs, so far impurity doping into diamond has not been successful because of extremely high activation energy. But we have established p-type doping on the H-terminated diamond using NO₂ gas [4], and thermal stabilization and gate insulation with ALD Al₂O₃ layer [4]. We have fabricated diamond MOSFET (Fig. 1) demonstrating high drain current density (ID) of 0.68 A/mm, a low ON-state resistance of 50 Q·mm, and extremely high OFF-state breakdown voltage (VBR) of -2568 V. The specific on-state resistance, (R_{ON,spec}) was determined to be 7.54 m $\Omega \cdot cm^2$, and the maximum available power, i.e., BFOM (= $V_{BR}^2/R_{ON,spec}$) has been obtained to be 874.6 MW/cm² (Fig. 2), the highest ever in diamond, ~40% of GaN's top value [5]. Further, we demonstrated fast turn-on (t_{on}) and turn-off (t_{off}) switching times of 9.97 ns and 9.63 ns, respectively [6]. The first stress measurement was performed, showing 190 h of stable operation under a DC gate bias and drain bias stress [7]. No evident degradation in I_D was observed throughout the stress period; the gate current (IG) increased after 83 h of stress due to the charge injection into the Al₂O₃ layer, although it did not influence the I_D.

Figure 1. Schematic cross-section of NO₂-p-type-doped diamond MOSFET.

10

10

10

V_{BR}/L_{DD}= 2.3 MV/cm

-21

V_{DS} (V)

⁺ Author for correspondence: kasu@cc.saga-u.ac.jp

^[1] M. Kasu, Jpn. J. Appl. Phys. 56, 01AA01 (2017). [2] S. -W. Kim, M. Kasu et al., Appl. Phys. Express 14, 115501 (2021). [3] M. Kasu et al., Dia. Rel. Mater. 126, 109086 (2022). [4] M. Kasu et al., Appl. Phys. Express 5, 025701 (2012). [5] N. C. Saha, M. Kasu, et al., IEEE Electron Dev. Lett. 43, 777 (2022). [6] N. C. Saha, M. Kasu, et al., IEEE Electron Dev. Lett. 44, 793 (2023). [7] N. C. Saha, M. Kasu, et al., IEEE Electron Dev. Lett. 44, 975 (2023).

Supplementary information

Material	E _G (eV)	E _{BR} (MV∕cm)	v _{sat} (×10 ⁷ cm∕s)	µ (cm²∕Vs)	8 _r	λ(W/cmK)
Diamond	5.47	>10	1.5 (e) 1.05 (h)	\sim 4500 (e) \sim 3800 (h)	5.7	22
Ga ₂ O ₃	4.8	8		\sim 300 (e)	10	0.23
SiC	3.26	2.8	2.2 (e) 1.3 (h)	\sim 1200 (e) \sim 120 (h)	9.8	4.9
GaN	3.4	5	2 (e)	\sim 2000 (e)	8.9	1.5
GaAs	1.4	0.4	1-2 (е)	\sim 8500 (e) \sim 400 (h)	12.9	0.55
Si	1.1	0.3	1 (e)	\sim 1400 (e) \sim 450 (h)	11.7	1.3

Table 1: Physical properties of diamond and other semiconductors.

Figure 3. (a)Turn-On and (b) Turn-Off dynamic switching characteristics of the diamond MOSFET.

Figure 4. Negative gate bias stress time dependent drain current (I_D) and gate current (I_G).