Characterization of Buffer Layers for Remote Plasma-Enhanced Chemical Vapor Deposition of Germanium-Tin Epitaxial Layers

S. Zollner,¹ C. A. Armenta,¹ B. Rogers,² G. J. Grzybowski,^{3,4} B. Claflin⁴

¹Dept. of Physics, New Mexico State University, Las Cruces, NM, USA ²Dept. of Chemical and Biomolecular Eng., Vanderbilt University, Nashville, TN, USA ³KBR, 3275 Pentagon Boulevard, Beavercreek, OH 45431, USA ⁴Air Force Research Laboratory, Sensors Directorate, WPAFB, OH 45433, USA

Germanium-tin alloys are of interest for infrared light detectors to increase capabilities in image and data capture and transmission, because they can have a direct band gap with more than about 7% tin. Remote plasma-enhanced chemical vapor deposition (RPECVD) is attractive for growth of Ge-Sn alloys because it enables low-temperature epitaxy on Si using common precursors GeH₄ and SnCl₄. The growth of such epilayers can be optimized with an initial high-temperature buffer layer. This work focuses on the characterization of this buffer layer using atomic force microscopy, ellipsometry, thin-film powder x-ray diffraction, and x-ray photoelectron spectroscopy (XPS) for different growth conditions.

Thin Ge and Ge-Sn buffer layers with 10-20 nm thickness were deposited on Si (100) substrates for one minute at temperatures from 360°C to 500°C with varying SnCl4 precursor flows mixed with GeH4 and helium. Ellipsometry spectra for all films show critical point structures in the E₁, E₁+ Δ_1 , and E₂ region of Ge, indicating that all layers are crystalline. A layer grown at 360°C without SnCl₄ can be described reasonably well as an 11 nm thick layer of crystalline germanium with 2 nm of roughness. Adding SnCl₄ to the gas flow significantly reduces the height of the ϵ_2 maximum at E₂, indicating that the layer is rough. In addition, a new broad peak appears near 1.3 eV, which is attributed to plasmonic effects arising from metallic β -tin inclusions. The plasmon peak disappears in the layers grown at 490°C with the same SnCl₄ flow. We conclude that depositing the buffer layer with SnCl₄ at low temperatures leads to β -Sn precipitates, where plasmon oscillations can be excited, but are not present for high-temperature growth.

The tin contents in the layers were also estimated by x-ray photoelectron spectroscopy. While XPS measures the total amount of tin in the layers, the presence of substitutional tin in Ge_{1-x}Sn_x alloy buffers is best determined with x-ray diffraction. The (002) diffraction peak is forbidden in pure Ge, because the contributions from the two Ge atoms in the primitive unit cell cancel. It is absent in our buffers grown without SnCl₄ or at high temperature. The (004) XRD peak position in these layers is also very similar to pure Ge. The Ge_{1-x}Sn_x (002) peak does appear in buffers grown at temperatures lower than 460°C. From the position of the (004) XRD peak, we can estimate the tin content to be below 7%, ignoring the effects of residual stress. This tin content determined from XRD shifts is much lower than the total tin content of about 20% estimated by XPS. The excess tin is contained in β-tin precipitates, which lead to the plasmonic ellipsometry peaks mentioned earlier.

In summary, the substitutional tin content in thin $Ge_{1-x}Sn_x$ buffer layers grown directly on Si substrates by RPECVD is modulated by temperature and SnCl₄ flow rates. Excess tin is present in β -tin precipitates, which lead to plasmonic resonances in ellipsometry spectra.