Fluctuating high temperature superconductivity in monolayer FeSe / SrTiO₃

Kyle M. Shen¹, Brendan D. Faeth¹, Shuolong Yang^{1,2}, Darrell G. Schlom²

¹ Department of Physics, Cornell University, Ithaca NY 14853 ² Department of Materials Science & Engineering, Cornell University, Ithaca NY 14853

The nature and origin of the enhanced superconductivity in monolayer FeSe / SrTiO₃ has been attracted tremendous interest due to its unique character as an interfacially enhanced high-T_c superconductor. FeSe / SrTiO₃ exhibits a spectroscopic gap opening temperature (T_{gap}) between 60 to 70 K, nearly one order of magnitude higher than that of bulk FeSe (T_c = 8K), and in excess of related electron-doped FeSe-based bulk compounds. This dramatic enhancement remains the largest amongst known superconductors, positioning monolayer $FeSe / SrTiO_3$ as an ideal platform for investigating fundamental questions about interfacial superconductivity. In particular, the combination of its high-T_c and inherently twodimensional (2D) nature makes FeSe / SrTiO₃ suited for exploring the interplay between 2D phase fluctuations and the interfacial enhancement of superconductivity, a better understanding of which could enable the future design and engineering of artificial higher- T_c superconductors. In this work, we employ a combination of *in situ* electrical resistivity and angle-resolved photoemission spectroscopy (ARPES) measurements of monolayer FeSe / SrTiO₃ to reveal an unprecedentedly large pseudogap regime between the initial formation of incoherent Cooper pairs ($T_{gap} \sim 70$ K) and the onset of a zero resistance state ($T_0 \sim 30$ K). Through measurements of the V(I) characteristics, we identify this large pseudogap regime as originating from two-dimensional superconducting fluctuations, establishing the critical role that reduced dimensionality plays in the superconductivity of monolayer FeSe / SrTiO₃.

⁺ Author for correspondence: kmshen@cornell.edu