Diffusion of Silver and Nickel into Few-Layer MoS₂ and Its Effect on Contact Resistance

<u>T. N. Walter</u>,¹ A. C. Domask¹, M. Abraham¹, B. Kabius¹, K. A. Cooley¹, and S. E. Mohney¹

Materials Research Institute, The Pennsylvania State University, University Park, PA, USA

MoS₂ is attractive for a variety of nanoelectronic devices due to its ability to maintain desirable semiconducting properties at the single layer limit [1]. Understanding the behavior of metal/MoS₂ interfaces is important for developing low-resistance contacts for scaled transistors and other emerging applications of MoS₂. Our recently published work on Ag/MoS₂ contacts shows that after annealing in Ar at 250 and 300 °C, the contact resistance R_C is reduced from 0.8–3.5 k Ω ·µm to 0.2–0.7 k Ω ·µm, likely due to the incorporation of Ag donors between layers of MoS₂ [2]. This result is very good relative to the state-of-the-art. More recently, we have verified using transmission electron microscopy and electron energy loss spectroscopy that Ag diffuses into MoS₂ at low levels.

Now we have discovered that Ni also diffuses into MoS_2 — without altering its structure — after annealing in Ar at a temperature as low as 200 °C. Therefore, we fabricated Ni-based contacts to MoS_2 and characterized them before and after annealing. However, annealing caused an increase in R_C in every Ni-contacted device. As deposited, R_C varied from 2.5–8.0 k Ω ·µm, but it increased by 50% after annealing at 200 °C, and increased by 650% after annealing at 300 °C. While Ag acts as a donor when intercalated in MoS_2 [3], Ni might not. Our further efforts towards understanding the effects of diffusion of Ag, Ni, and possibly other transition metals into MoS_2 may ultimately guide us in achieving even lower contact resistances.

Figure 1. (a) Optical image of a TLM test structure; (inset) schematic of a back-gated MOSFET with Ni contacts. (b) Contact resistance for as-deposited and annealed Ni contacts versus sheet carrier density (n).

[3] D. M. Guzman et al., J. Appl. Phys. 121, 055703(2017).

^[1] K. F. Mak et al., Phys. Rev. Lett. 105, 136805(2010).

^[2] M. Abraham and S. E. Mohney, J. Appl. Phys. 122, 115306 (2017).

⁺ Author for correspondence: mohney@ems.psu.edu

Supplementary Information:

Details of $R_{\rm C}$ extraction from MOSFETs:

Figure 2: (a) Raw I_D - V_G characteristic curves of MOSFETs of differing channel length. (b) I_D - V_G curves normalized for channel width (W) and threshold voltage (V_T) variations. (c) Transfer length method (TLM) plot of channel length (L) vs. total resistance (R_{tot}) for $n = 5.0 \times 10^{12}$ cm⁻² to extrapolate to L = 0, where $R_{tot} = 2R_C$. Also shown are equations relating raw data to R_C , R_{sh} , and n.