Evaluation of Strain in the Oxide Covered Silicon Nanowires for Thermoelectric Devices by Raman Spectroscopy

R. Yokogawa,^{a, c} S. Hashimoto,^b M. Tomita,^{a,b,c} T. Watanabe,^b and A. Ogura^a

^aSchool of Science and Technology, Meiji University, 1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan ^bFaculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

^cJSPS Research Fellow DC, 5-3-1 Kojimachi, Chivoda-ku, Tokyo 102-0083, Japan

Silicon nanowires (SiNWs) are promising candidates for the thermoelectric devices as well as next-generation channel materials of surrounding gate field-effect transistors [1]. Especially SiNWs with cover oxide is recognized as a promising new thermoelectric material owing to their low dimensionality and the disorder strain induced at the SiO₂/SiNWs interface. To realize SiNW devices with high electric and thermoelectric performances, further improvements through the optimization of strain in the NWs are necessary to achieve a higher mobility and a lower thermal conductivity. Raman spectroscopy is a powerful strain evaluation technique in the nanostructures, because it has advantages such as a high spatial resolution and a nondestructive measurement [2]. In this study, we evaluated the strain in the oxide covered SiNWs. We fabricated SiNWs using silicon-on-insulator (SOI) wafers with thermal oxidation under various conditions. We also performed small amount of Ar⁺ ion irradiation to modify the SiO₂/SiNW interface (25 keV. $1.0 \text{ x } 10^{14} \text{ cm}^{-2}$).

Figure 1 shows the σ_{xx} and σ_{yy} components of the biaxial stresses of the along the SiNW length and width directions evaluated by waterimmersion Raman spectroscopy before and after Ar⁺ ion irradiation. Before Ar⁺ ion irradiation, the anisotropic biaxial stresses σ_{xx} and σ_{yy} in SiNWs were confirmed to be compressive and tensile stress, respectively. On Fig. 1. Biaxial stresses along the SiNW the other hand, after Ar^+ ion irradiation, we

length and width directions.

confirmed that σ_{xx} became tensile stress, and σ_{yy} was almost completely relaxed. We consider that an oxide-induce lattice disorder of the SiNW is relaxed by breaking strained bonds at SiO₂/SiNW interface by the ion irradiation, and tensile stress along the long direction (σ_{xx}) in the SiNW is induced by SiNW lattice disorder. In conclusion, we evaluated the strain induction mechanism in the SiNW by Raman spectroscopy, sensitively.

⁺ Author for correspondence: r_yokogawa@meiji.ac.jp

^[1] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli et al., Nature 451, 168 (2008).

^[2] R. Yokogawa, S. Hashimoto, S. Asada et al., Jpn. J. Appl. Phys. 56, 06GG10 (2017).