| Contact n-GaAsP 125 nm                                        |                                        |
|---------------------------------------------------------------|----------------------------------------|
| Window <i>n</i> -AllnP 20 nm<br>Emitter <i>n</i> -GaAsP 50 nm | (b) w/o DBR (baseline)                 |
| UID-GaAsP 300 nm                                              | BSF p-Al <sub>0 34</sub> GaAsP 50 nm   |
| Base p-GaAsP 400 nm                                           | Spacer <i>p</i> -GaAsP 400 nm          |
| w/o or w/ DBR                                                 | <u> </u>                               |
| Etch stop p-GalnP 30 nm                                       | (c) w/ DBR (DBR cell)                  |
| LCL p-GaAs 250 nm                                             | DBR1 p-Al <sub>0.20</sub> GaAsP 49 nm  |
| Graded buffer                                                 | DBR2 p-AlosoGaAsP 57 nm                |
| <u>p-GaAs<sub>y</sub>P<sub>1-y</sub> 1.8 μm</u>               |                                        |
| Buffer <i>p</i> -GaP 500 nm                                   | 19× :                                  |
| Nucleation <i>n</i> -GaP 50 nm                                | DBR41 p-Al <sub>0.20</sub> GaAsP 49 nm |
| Substrate UID/p-Si 750 µm                                     |                                        |

(a)

Fig. 1. Schematic of (a) GaAsP single-junction (1J) solar cells with either (b) a spacer and back surface field (BSF) layer or (c) an AlGaAsP distributed Bragg reflector (DBR) below the absorber to enhance photon absorption.



Fig. 2. (a) Cross-sectional SEM and (b) measured vs. simulated reflectance of an AlGaAsP DBR-only calibration growth. ~25nm shift in the central wavelength, due to interpolation errors in refractive index modeling, was corrected in the device growth.

(a) Baseline; TDD=7±3×10<sup>6</sup> cm<sup>-2</sup>



(b) DBR-only; TDD=8±2×10<sup>6</sup> cm<sup>-2</sup>



(c) DBR cell; TDD=8±3×10<sup>6</sup> cm<sup>-2</sup>



Fig. 3. ECCI micrographs of (a) GaAsP 1J baseline, (b) DBR-only calibration, and (c) GaAsP 1J DBR cell, with white circles denoting threading dislocations (TDs). All cells show similar TDD (≤8×10<sup>7</sup> cm<sup>-2</sup>), confirming that the DBR does not introduce additional TDs.



Fig. 4. (a) External quantum efficiency (EQE) and reflectance spectra, and (b) lighted current-voltage characteristics of GaAsP solar cells with and without an AlGaAsP DBR. The DBR significantly improves carrier collection at long wavelengths, increasing EQE-J<sub>SC</sub> by 1.42 mA/cm<sup>2</sup>. Increased J<sub>SC</sub>, along with a 12 mV V<sub>OC</sub> gain, drives a 1.46% absolute efficiency increase compared to the baseline cell.