

Fig. 1. (a)-(c) Cross-sectional schematics after 20, 350, and 1300 nm of p-InP (p=10¹⁸cm⁻³) growth on patterned n-InP substrate. Pattern consists of isosceles-right-triangles (side length = 965 nm) of SiN (40 nm thick); (d) plan-view SEM after 20 nm growth showing selectivity; (e) and (f) XSEM after 350 and 1300 nm of p-InP growth.

20 nm InP growth

350 nm InP growth 1300 nm InP growth (a) 1110 nm triangle 110 nm triangle 1110 nm triangle No TD, SF ghest SFD No III-V on dielectric TDD = 4.2×10⁷ cm⁻² p-InP pits SiN TDs h) 465 nm triangle (b) 465 nm triang $TDD = 9.7 \times 10^7 \text{ cm}^{-2}$ TD on dielect V-III O TDs pit (i) 266 nm polygon 66 nm polygon (f) 266 nm polygo 1 µm owest SFD, TD **III-V on dielec** $TDD = 5.0 \times 10^6 \text{ cm}^{-2}$ TDs ECCI ECCI SEI ECC SE

Fig. 2. (a) - (c) ECCI/SEI of 20 nm p-InP grown on patterned SiN/n-InP substrate with feature size of (a) 1110 nm, (b) 465 nm, and (c) 266 nm; (d) - (f) ECCI/SEI of 350 nm p-InP grown on similar patterns; (g) - (i) ECCI/SEI of 1300 nm p-InP grown on similar patterns. SF = Stacking fault, TD = threading dislocation, SFD/TDD refers to density. Scalebar = 1µm.

Fig. 3. (a) Plan-view schematics of patterned $SiO_2/n-InP$ substrate (line pattern); (b) - (d) ECCI of 580 nm p-InP grown on the same substrate with SiO_2 line oriented along (b) [0 -1 1], (c) [0 1 1], and (d) [0 1 0] crystallographic directions. Dashed line represent the two sides of buried SiO_2 lines. The [0 1 0] stripes show the lowest defect density.

References

- [1] K. Hirose et al., *Nature Photonics* 8, no. 5 (May 2014): 406–11.
- [2] Z. Wang et al., *Materials Science and Engineering: B* 177, no. 17 (October 2012): 1551–57.
- [3] D. Ironside et al., *Progress in Quantum Electronics* 77 (May 2021): 100316.
- [4] M. Fahed et al., *Nanotechnology* 26, no. 29 (July 24, 2015): 295301.