
Improving MBE (Bi,Sb)₂(Te,Se)₃ Topological Materials Via Resonant and Magnetic Dopants

Patrick Taylor¹, Brandi Wooten², Jos Heremans², Mahesh Neupane¹, Harry Hier¹, Owen Vail¹, Paul Corbae³, Aaron Engel³, Patrick Folkes¹, Christopher J. Palmstrøm³

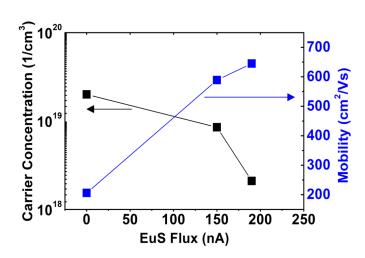

- 1. DEVCOM US Army Research Laboratory, Adelphi, MD 20783
- 2. Materials Department, The Ohio State University, Columbus, OH
- 3. University of California Santa Barbara, Santa Barbara, CA

Figure 1: In-situ ARPES measurements from pure Bi₂Se₃ (left) and Bi₂Se₃ doped with resonant Sn (right) showing the behavior predicted by DFT calculations.

Figure 2: The improvement in transport properties of (Bi,Sb)₂(Te,Se)₃ doped with europium sulfide showing the desired reduction of bulk carriers (left), and near complete elimination of conduction band states with the Fermi level approaching the Dirac-like states.

