<u>Adsorption-Controlled Growth of SrTiO₃ by Oxide MBE</u> Dylan Sotir^{1, 2}, Matthew Barone^{1,2}, Darrell Schlom^{1,2,3,4}

 ¹ Department of Materials Science and Engineering, Cornell University
 ² Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University
 ³ Kavli Institute at Cornell for Nanoscale Science
 ⁴ Leibniz-Institut f
ür Kristallz
üchtung

Historically, the growth of stoichiometric SrTiO₃ by conventional molecular-beam epitaxy (MBE), utilizing elemental sources, has been challenging due to the precise calibration required. It would be useful if there were a thermodynamic regime where the composition of SrTiO₃ was self-regulating. One demonstrated way to achieve such automatic control of stoichiometry in SrTiO₃ is by supplying an excess of the volatile organometallic precursor titanium isopropoxide to grow SrTiO₃ by metalorganic MBE (MOMBE). Another means, and the one investigated here, is to stick with elemental sources but increase the substrate temperature. When SrTiO₃ is heated to high temperature, it does not evaporate congruently; rather, it loses more strontium than titanium. This difference in the vapor pressures of the volatile species suggests that adsorption-controlled growth of SrTiO₃ may be possible by conventional MBE. We report a thermodynamic window in which SrTiO₃ can be grown via adsorption control by conventional MBE. A new high-temperature laser substrate temperatures to reach up to 2000 °C.

We show that the growth window for our highest quality adsorption-controlled $SrTiO_3$ is from approximately 1450-1475°C, with a Sr:Ti ratio of 5:1. All films were grown on LaAlO₃ (100) substrates. Figure 1 shows XRD data for samples grown at several temperatures including the adsorption-control window.

Figure 1: θ -2 θ x-ray diffraction scan showing approximately 33 nm thick films of SrTiO₃ grown by MBE on LaAlO₃ (100) at a range of temperature from 1350-1550 °C at a background pressure of 10% ozone of 1×10⁻⁶ Torr.