InP-based InAs quantum dot/dash lasers emitting in the O-band

Sadhvikas J. Addamane¹, Subhashree Seth², Samuel D. Hawkins³, Noelle M. Collins³, Chen Shang⁴, Yating Wan⁴, Ganesh Balakrishnan², John F. Klem³, Ranju Venables⁵, John Bowers⁴

¹Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico, USA
²Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico, USA
³Sandia National Laboratories, Albuquerque, New Mexico, USA
⁴University of California - Santa Barbara, Santa Barbara, California, USA
⁵Intel Corp, Santa Clara, California, USA

Figure 1: Room-temperature photoluminescence (PL) measurements showing (a) tuning of the QD emission wavelength from the C-band (\sim 1.5µm) down to the O-band (1.3µm) by varying the composition of the quantum well in the dots-in-a-well active region. (b) comparison between InAs/GaAs and InAs/InP QDs – InP-based QDs show reasonable intensities and \sim 2x linewidth.

Figure 2: (a) Atomic force microscopy (AFM) scan of exposed QDs showing elongation along the $[1\overline{10}]$ direction – forming Qdash-like structures. (b) L-I-V measurements from 100µm X 1mm edge-emitting laser devices fabricated from optimized active regions integrated with cladding and contact layers. Turn-on voltage from I-V as expected and L-I shows turn-on characteristics. NOTE: Ringing extending to the end of the pulse explains unusual shape of I-V at higher currents.