Long-Wavelength InAs-based Interband Cascade Lasers Grown by MBE

J.A. Gupta,¹ X. Wu,¹ G.C. Aers¹, Y. Li,² L. Li,² W. Huang² and R. Q. Yang²

¹ National Research Council of Canada, Ottawa K1A 0R6 Canada ² University of Oklahoma, School of Electrical and Computer Engineering, Norman, Oklahoma, 73019, United States

Interband cascade lasers (ICLs) are becoming a leading semiconductor laser technology for the mid-infrared because of their high efficiency and low power consumption, especially as compared with conventional diode lasers and intersubband quantum cascade lasers (QCLs) in the wavelength range from 3-5 μ m. Although a greater effort has been directed towards GaSb-based ICLs in the ~3-5 μ m range, recent work has highlighted the exciting potential for InAs-based ICLs for reaching longer emission wavelengths.

In this work we report the development of low-threshold InAs-based ICLs with a roomtemperature emission wavelength of 6.3μ m. The devices were grown on n+-InAs (100) substrates by solid-source molecular beam epitaxy in a custom V90 system using valved crackers for Sb₂ and As₂. The ICL structures employ an improved waveguide design using intermediate AlAs/AlSb/InAs strain-balanced superlattice cladding layers surrounded by heavily-doped n⁺-InAs plasmonic claddings. The active region includes 15-stages with AlSb/InAs/In(0.35)Ga(0.65)Sb/InAs/AlSb type-II "W" quantum wells and optimized electron injector doping.

In pulsed mode, broad-area devices lased at 300 K at a lasing wavelength of 6.26 μ m and a threshold current density of 395Acm⁻² which is the lowest ever reported among semiconductor lasers at similar wavelengths. The broad-area devices lased up to 335K in pulsed mode at a wavelength of 6.45 μ m. These results provide strong evidence of the potential for InAs-based ICLs as efficient sources in the mid-IR.

⁺ Author for correspondence: james.gupta@nrc.ca