2.0 – 2.2 eV AlGaInP solar cells grown by MBE

Y. Sun,^{1,2} S. Fan,¹ J. Faucher,² B. Li,¹ M. L. Lee^{1, +}

¹ Dept. of Electrical Engineering, Yale University, New Haven, CT, USA ² Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA

(Al_xGa_{1-x})_{0.51}In_{0.49}P (AlGaInP), with a tunable bandgap energy (Eg) of 1.9 – 2.2 eV, is an ideal top cell material for high-efficiency multi-junction (MJ) solar cells with 5 – 6 junctions. However, AlGaInP growth is challenging by both molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE) due to O-related defects. Recent work has shown that the performance of MOVPE-grown AlGaInP solar cells can be greatly improved by growth at very high temperatures of ~740 – 780 °C [1]. However, the MBE growth temperature of AlGaInP is typically restricted to < 500 °C, making post-growth annealing a crucial step to improve material quality [2]. In this work, we report on MBE-grown 2.0 – 2.2 eV AlGaInP solar cells, as well as effects of rapid thermal annealing (RTA). All aspects of cell performance were improved by RTA, though the enhancement diminished at the highest E_g and Al content. A 14.3% efficiency (η) was achieved in an anti-reflection-coated (ARC) 2.0 eV AlGaInP solar cell, closely matching record cells grown by MOVPE.

Cells with $E_g = 2.02$, 2.09, and 2.19 eV were grown by solid-source MBE at substrate temperatures of ~480 °C and V/III ratios of 10 – 15, while RTA was conducted at ~700 – 800 °C prior to device fabrication.

RTA led to improvements in internal quantum efficiency (IQE) for all cells, though the gain was most pronounced in the 2.02 eV AlGaInP. Short-circuit current density (J_{SC}) was accordingly boosted, as shown in the figure and table. V_{OC} also increased, together with a dark current reduction of $3 - 4 \times$. The boosts in J_{SC} , V_{OC} , and efficiency show that RTA substantially improves the minority carrier lifetime and diffusion length in AlGaInP. An efficiency of 14.3% was achieved in the 2.02 eV AlGaInP cell after RTA with ARC, closely matching the record set by MOVPE.

Perl, E. E., et al. J. Photovolt. 6.3 (2016): 770-776.
Faucher, J., et al. Appl. Phys. Lett. 109.17 (2016): 172105.

+ Author for correspondence: mllee@illinois.edu

LIV of uncoated AlGaInP solar cells before and after <u>*RTA*</u>

E _g (eV)	J _{sc} (mA/cm ²)	V _{oc} (V)	η (%)
2.19	4.87→ <u>5.04</u>	1.56→ <u>1.59</u>	5.9→ <u>6.2</u>
2.09	5.67→ <u>6.08</u>	1.45→ <u>1.50</u>	6.5→ <u>7.5</u>
2.02	7.64→ <u>8.46</u>	1.43→ <u>1.48</u>	8.7→ <u>10.9</u>

Contact	n-GaAs	1×10 ¹⁹ cm ⁻³	300 nm		
Window	n-AllnP	1×10 ¹⁸ cm ⁻³	20 nm		
Grade	n-AlGaInP	1×10 ¹⁸ cm ⁻³	<u>30 nm</u>		
Emitter	n-AlGaInP	1×10 ¹⁸ cm ⁻³	35 nm		
Base	p-AlGaInP	5×10 ¹⁶ cm ⁻³	1500 nm		
Grade	n-AlGaInP	5x10 ¹⁶ cm ⁻³	30 nm		
Grade	prilounn	<u>5810 cm</u>	50 1111		
BSF	p-AlInP	3×10 ¹⁸ cm ⁻³	50 nm		
Buffer	p-AlGaAs	5×10 ¹⁸ cm ⁻³	250 nm		
Buffer	p-GaAs	7×10 ¹⁸ cm ⁻³	150 nm		
p-GaAs Substrate (001) offcut 6° A					

Fig. 1: Structure of 2.02, 2.09 and 2.19 eV AlGaInP solar cells investigated in this work.

Fig. 2: IQE before (0) and after (•) RTA. While all cells were improved by RTA, the 2.02 eV cell (orange) gained most.

Fig. 3: Decrease of bandgap-voltage offset W_{OC} (= $E_g/q-V_{OC}$) and dark current J_{02} as a function of E_g , indicating improvement in minority carrier lifetime after RTA.

Fig. 4: All aspects of AlGaInP solar cell performance $(J_{sc}, V_{oc}, FF and efficiency)$ improved by RTA, as a result of improved materials quality (no anti-reflection coating, ARC).

Fig. 5: 2.02 eV AlGaInP solar cell efficiency increased to 14.3% with RTA and double-layer ARC, closely matching record-efficiency 2.02 eV AlGaInP cells by MOVPE.