Kinetically Limited Growth of High Scandium Fraction Scandium Aluminum Nitride

M. Hardy, B. Downey, N. Nepal, D. Storm, D. Katzer, D. Meyer

U.S. Naval Research Laboratory, 4555 Overlook Ave, Washington, DC 20375, USA.

Thin film AlN-based resonators are the industry standard for microwave-frequency filters used in 4G cell phone technology, and a variety of other RF applications [1]. $Sc_xAl_{1-x}N$ has the potential to replace AlN in next generation devices due a factor of five improvement in piezoelectric response for x = 0.43 [2]. ScAlN is previously been grown by reactive sputtering, which often has relatively high impurity incorporation and high densities of structural defects. Growth of electronic-device-quality ScAlN by molecular beam epitaxy (MBE) has been demonstrated in high-electron-mobility transistor (HEMT) structures using lattice-matched Sc_{0.18}Al_{0.82}Nbarriers [3]. MBE-growth of high ScN mole fraction ScAlN will enable novel acoustoelectric devices, such as resonant body HEMTs, which take advantage of both the piezoelectric and electronic properties of ScAlN.

200-nm Sc_xAl_{1-x}N samples were grown on 10-nm AlN nucleation layers on 4H-SiC substrates using an RF-plasma MBE equipped with a high temperature effusion cell to supply Sc flux and a dual-filament effusion cell to supply Al flux. Samples with ScN molar fraction varying between 0.10–0.38 were grown at substrate thermocouple temperatures ranging from 400 °C to 920 °C. At moderate ScN fractions of 0.10–0.25, the substrate temperature had minimal impact on ScAlN quality, with films grown at lower temperature having rougher surfaces, but all samples were single-phase wurtzite ScAlN. Reflection high-energy electron diffraction (RHEED) patterns of samples with x = 0.38 grown at 800 °C and 400 °C are shown in Fig. 1, and cross-sectional transmission electron micrographs (TEM) of the same two samples are shown in Fig. 2. The RHEED pattern for the 800 °C-grown sample in Fig. 1(a) shows an extra set of first order spots, consistent with rotated cubic domains, while the TEM image in Fig. 2(a) shows evidence of rock-salt cubic inclusions. However, when grown at 400 °C, both RHEED in Fig. 1(b) and TEM in Fig. 2(b) show single-phase wurtzite ScAlN.

This work was funded by the Office of Naval Research.

- [1] G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby, MRS Bulletin 37, 1051 (2012).
- [2] M. Akiyama, K. Kano, and A. Teshigahara, Appl. Phys. Lett. 95, 162107 (2009).
- [3] M. T. Hardy, B. P. Downey, N. Nepal, D. F. Storm, D. S. Katzer, and D. J. Meyer, Appl. Phys. Lett. 110, 162104 (2017).

Figure 1. RHEED images for $Sc_{0.38}Al_{0.62}N$ samples grown at (a) 800 °C and (b) 400 °C.

Figure 2. TEM images for $Sc_{0.38}Al_{0.62}N$ samples grown at (a) 800 °C and (b) 400 °C.

Supplementary Information

Figure 3.(a) X-ray diffraction 0002 $2\theta/\omega$ line scan showing a single ScAlN peak and additional weak interference fringes features related to the thin AlN nucleation layer, and (b) $10\overline{1}5$ reciprocal space map used to calculate the Sc_{0.38}Al_{0.62}N composition via measurement of the *a*-lattice constant.