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The advent of the new 4th generation x-ray light sources represents an unprecedented opportunity to conduct in situ and 

operando studies on the structure of nanoparticles in reactive liquid or gas environments. In this talk, I will illustrate how 

Bragg coherent x-ray imaging [1] allows to image in three dimensions (3D) and at the nanoscale the strain and defect dynamics 

inside nanoparticles as well as their refaceting during catalytic reactions [2–4]. As an example, we successfully mapped the 

lattice displacement and strain of a Pt nanoparticle in electrochemical environment (see Figure 1). Our results reveal that the 

strain is heterogeneously distributed between highly- and weakly-coordinated surface atoms, and propagates from the surface 

to the bulk of the Pt nanoparticle as (bi)sulphates anions adsorb on the surface [5]. 

We will also discuss the possibility to measure particles as small as 20 nm [6] and to enable high-resolution and high-energy 

imaging with Bragg coherent x-ray diffraction at 4th generation x-ray light sources [7]. Finally, I will highlight the potential 

of machine learning to predict characteristic structural features in nanocrystals just from their 3D Bragg coherent diffraction 

patterns [7]. 

 
Figure 1. Evolution of the lattice displacement and strain of a Pt nanoparticle in its pristine state and under potential 

control (0.56 V vs. RHE) and in 0.05 M H2SO4. 
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