Research of The Growth Mechanism of Solvothermally Synthesized Sb₂Te₃ Nanosheets

Yen-Jen Lin^a, Chih-Yen Chen^{a,*}

^a Department of Materials and Optoelectronic Science, National Sun Yat-Sen University

Sb₂Te₃ is one of the topological insulated (TI) materials. Owing to the strong electron spin-orbital coupling, TI materials have conductive surfaces, and the inside parts are insulated. One of the most critical factors in showing the topological insulating property is the thickness of the materials. In this work, we successfully synthesized Sb₂Te₃ nanosheets by solvothermal method. Inspecting the growth process using scanning electron microscopy showed that we obtained Te nanowire initially. Te nanowire then turned into Sb₂Te₃-Te hierarchical nanostructure with increasing of time and finally into Sb₂Te₃ nanosheets. We can suggest the growth mechanism of Sb₂Te₃ nanosheets from the results. We also found that the absorption range in UV-Vis was different by the difference of experimental products. It has become a convenient method to identify the section of the as-prepared products. Furthermore, we also found that by tuning the concentration of NaOH or increasing temperature, we can successfully synthesize nanosheets with a radius and thickness of 1.5 μ m and 9.8 nm, respectively. Being able to well-control the thickness of Sb₂Te₃ nanosheets is very helpful for the subsequent component fabrication.

Keywords: topological insulator, antimony telluride, hierarchical structure