## Synthesis of a new ternary nitride semiconductor - Zn<sub>2</sub>VN<sub>3</sub>:

A combinatorial exploration of the Zn-V-N phase space

Supplementary information

- S. Zhuk<sup>a</sup>, A. A. Kistanov<sup>b</sup>, S. C. Boehme<sup>a,c</sup>, N. Ott<sup>a</sup>, M Stiefel<sup>a</sup>, M. V. Kovalenko<sup>a,c</sup>, <u>S. Siol</u><sup>a</sup>
- a) Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- b) Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- c) Department of Chemistry and Applied Bioscience, ETH Zürich, 8093 Zürich, Switzerland

A computationally-guided combinatorial PVD screening of the entire Zn-V-N phase space is performed, resulting in the synthesis of the previously unreported ternary nitride  $Zn_2VN_3$ . [1]

**Figure 1** outlines the workflow of the accelerated materials discovery and design approach used in this work. It includes the computational prediction using density functional theory calculations, a comprehensive combinatorial phase- and property screening, and finally the synthesis and characterization of single-phase wurtzite  $Zn_2VN_3$ .

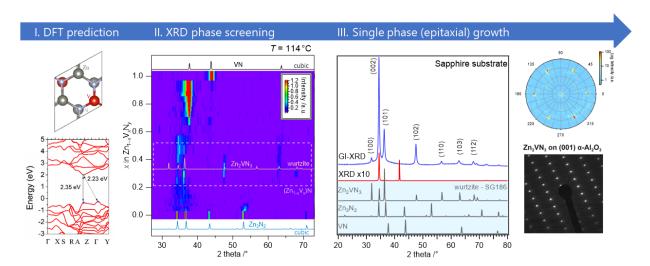



Figure 1: Workflow of the accelerated discovery and synthesis of Zn<sub>2</sub>VN<sub>3</sub>

[1] S. Zhuk et al. 2021 arXiv:2109.00365