The Property of Adhesion and Biocompatibility of Silicon and Fluorine Doped Amorphous Carbon Films

M. Toyonaga ^a, T. Hasebe ^{a, b}, S. Maegawa ^b, T. Matsumoto ^{a, b}, A. Hotta ^a, T. Suzuki ^a ^a Center for Science of Environment, Resources and Energy, Graduate School of Science and Tachnology Keio University ^b Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine

About our Study

In this study, we developed **silicon and fluorine doped amorphous carbon (a-C:H:Si:F) film** using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, which exhibitis both **high adhesion** of silicon-incorporated interlayer and **excellent biocompatibility** of fluorine doped amorphous carbon (a-C:H:F) film (**Fig. 1**), aiming at shortening the film deposition time. In order to fabricate a-C:H:Si:F film and realize the good property, the mixture of TMS, C₃F₈ and C₂H₂ gases was used for depositon (**Table. 1**), and the adhesion property and biocompatibility were evaluated.

Fig. 1 Film structure images of (a) a-C:H:F with Si-interlayer and (b) a-C:H:Si:F

Table. 1 Deposition parameters of a-C:H:Si:F films				
Sample name		source gas flow late (sccm)		
	bias (kV)	TMS	C3F8	C ₂ H ₂
no-gradation	-1.5	6	50	0
F-gradation	-1.5	6	0→50	0
Si,F-gradation	-1.5	6→1	0→50	0
C ₂ H ₂ -doped	-1.5	6→0	0→50	0→3

Results and Discussion

Fig. 2 The scratch traces of (a) C₂H₂-doped and (b) a-C:H:F with Si-interlayer

Evaluation of Biocompatibility

Platelet adhesion test and leukocyte adhesion test were conducted in order to evaluate biocompatibility of the "C₂H₂-doped" a-C:H:Si:F film and a-C:H:F with Si-interlayer. These two coatings were found to significantly reduce the number of adherent platelets (**Fig. 3**) and leokocytes (**Fig. 4**) compared with non-coated NiTi substrate, and exhibited the same number of them.

These results shows that C₂H₂-doped has the same biocompatibility as a-C:H:F, and means that these two films have similar chemical composition, bonding state and surface free energy.

Evaluation of Adhesion

In this study, "no-gradation" was firstly deposited, but this showed low adhesion property. Thus, we newly developed a-C:H:Si:F films at a gas flow rate of gradually changed. In **Fig. 2**, the scratch traces of "C₂H₂-doped", which is one of the gradation films, and a-C:H:F with Si-interlayer after the scrach test are shown. "C₂H₂-doped" exhibited higher adhesion property than a-C:H:F with Si-interlayer, because "C₂H₂-doped" was deposited in one process and had no low adhesion interface.

Fig. 3 Images of adherent platelets on each sample : (a) NiTi substrate, (b) C₂H₂-doped, (c) a-C:H:F with Si-interlayer

Fig. 4 Images of adherent leokocytes on each sample : (a) NiTi substrate, (b) C₂H₂-doped, (c) a-C:H:F with Si-interlayer