The modification of refractive index by using solid

state diffusion

Hung-Pin Chen^{1,2}, Wen-Hao Cho¹, Cheng-Chung Lee², Yu-Wei Lin^{1,3}

¹Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 30076, Taiwan ²Department of Optics and Photonics, National Central University, Chungli 32001, Taiwan ³Department of Engineering and System Science, National Tsing Hua University *Email address: chbin@itrc.narl.org.tw

Abstract: The optical coatings with excellence performance would be achieved more easily when the materials chosen have relatively adjustable refractive index. In this study, $Al_2O_3/ZnO/Al_2O_3$ structures were fabricated using electron beam evaporation and 800°C post-annealing treatments were carried out. According to the inter-diffusion, the ZnO layer became a high refractive index material with porous structure and the ZnAl_2O_4 spinel was formed as low refractive index material and the refractive index contrast of the multilayer was increased. In the $Al_2O_3/ZnO/Al_2O_3$ structure, the porous ZnO layer with an average porosity of 19.78% was successfully prepared and the refractive index was from 2 reduced to 1.357 by 800°C post-annealing process due to solid state diffusion mechanism.

The XRD of Al₂O₃, ZnO and Al₂O₃/ZnO/Al₂O₃ thin films after an 800 °C annealing process for 4 hours

TEM & EDS line scan