Electrical and magnetic properties of (Al, Co) co-doped ZnO films deposited by RF magnetron sputtering

Yu-Wei Lin^a, Sheng-Chi Chen^{a, b, *}, Hui Sun^c, Chung-Hsien Wang^a, Chao-Kuang Wen^d, Tung-Han Chuang^d, and Xin Wang^c

^a Department of Materials Engineering and Center for Thin Film Technologies and Applications, Ming Chi University of Technology, Taipei 243, Taiwan

^b Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan

^c Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R.

China

^d Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan

In this work, (Al, Co)-ZnO films were co-sputtered on glass substrate through radio frequency sputtering at 100 °C. The film's structure, electrical and magnetic properties as a function of Al doping content is investigated. The results indicate that (Al, Co)-ZnO films crystallinity can be suppressed by Co doping or (Co, Al) co-doping. With the substitution of Zn^{2+} by Al^{3+} , the film's conductivity improves. All the films present ferromagnetic behavior at room temperature. With increasing Al doping amount, the film's saturation magnetization expresses a carrier-concentration dependent behavior. Three different regions can be defined, where BMP model and carrier-mediated exchange mechanisms play a role in the various regions.

Keywords: (Al, Co)-ZnO films; electronic properties; magnetic properties; RF sputtering; ferromagnetic behavior.

*Corresponding author: S. C. Chen, E-mail: chensc@mail.mcut.edu.tw