

Fig. 1 Schematic diagram of (a) BTO field plated and (b)BTO RESURF trench Ga₂O₃ SBD, (c) Microscope image of the large area (1mm²) SBD.

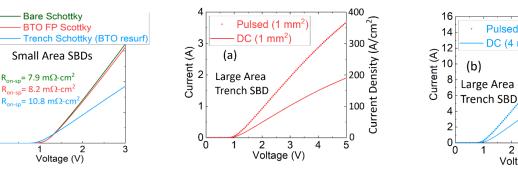


Fig. 3 IV characteristics of three types of SBDs (small area ~ 200x

Current Density (A/cm²) 000 000

0

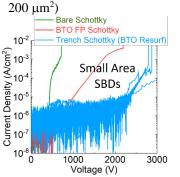


Fig. 5 Reverse IV and breakdown characteristics of the small area SBDs.

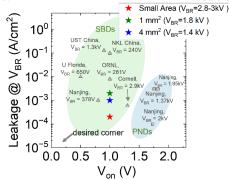
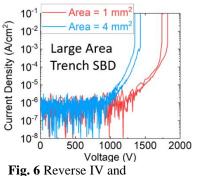
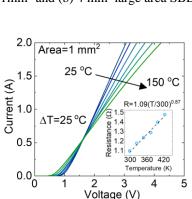




Fig. 8 Benchmark plots showing Von vs ILeakage at breakdown for state-of-the-art β-Ga₂O₃ SBDs

Fig. 4 DC and pulsed IV characteristics of (a) 1mm² and (b) 4 mm² large area SBD.

breakdown characteristics large area trench SBDs.

layer from a Pt/Ga₂O₃ (Bare Schottky) test structure.

(b)

Pulsed (4 mm²)

DC (4 mm²)

2

3

Voltage (V)

4

400

300

200

100

0

5

 (A/cm^2)

Current Density

Fig. 7 Temperature Dependent IV Characteristics. The inset shows temperature dependence of the Ron and the power law fitting.

Table I Summary of the	performance parame	ters of high current (>	I A) β-
	Ga ₂ O ₃ SBDs		

Gu ₂ O ₃ BDD3									
Device Type	Area (mm²)	Current @ (V _{on} + 2V) (A)	V _{on} (V)	V _{BR} (V)	R _{on-sp} (mΩ-cm²)	I _{Leakage} @V _{Br} (A/cm²)			
Normal SBD (U Florida) JVST. A 39, 013406 (2021).	115	45	0.7	240					
FP SBD (Virginia Tech) IEEE Trans. Power Electron. 36, 8565 (2021).	9	20	0.8	700	6.75				
NIO JTE SBD (UST China) IEDM. 2022, 210 (2022).	0.78	3	0.9	1300	4.7	0.13			
FP JBS (NKL China) IEEE Trans. Power Electron. 36, 6179 (2020).	1	1.7	1	700	7.6	0.005			
This Work	1	1 (DC) 2 (Pulsed)	1	~ 1800	~ 10.6	0.001			
This Work	4	5 (DC) 9 (Pulsed)	1	~ 1400	~ 10.6	0.002			