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10:45am AC+MD-TuM-10 Defects in Ga2O3: An Ultra-high Resolution 
Electron Microscopy Study, Nasim Alem, The Pennsylvania State 
University; A. Chmielewski, CEMES-CNRS, France INVITED 

Interest in β-Ga2O3 has dramatically increased in recent years due to the 
material’s potential promise for use in power electronics and extreme 
environments. Its combination of a monoclinic structure (C2/m space 
group), two inequivalent tetrahedral and octahedral gallium sites and three 
inequivalent oxygen sites, and a bandgap of 4.8 eV, 1.4 eV above that of 
gallium nitride, creates a semiconductor material with a unique set of 
properties. This is further aided by β-Ga2O3’s uncommon capability among 
the ultra-wide bandgap oxides to be grown into high quality single crystal 
substrates using both melt-based bulk and thin film growth and deposition 
methods. Defects and their stability and dynamics under static and extreme 
environments can limit the incorporation of β-Ga2O3 into new applications. 
Therefore, a direct visualization and in-depth understanding of the defects 
and their interplay with the environment is vital for understanding the 
materials properties and the device breakdown under extreme conditions. 
In this presentation we will discuss the atomic, electronic, and chemical 
structure of the defects in doped and UID β-Ga2O3 using scanning 
transmission electron microscopy (S/TEM) imaging and electron energy loss 
spectroscopy (EELS). In addition, we will discuss the electronic structure 
and the local properties in β-Ga2O3 under extreme conditions using STEM-
EELS. This fundamental understanding is important to uncover the 
breakdown behavior in β-Ga2O3 and the impact of defects on its device 
performance. 

11:15am AC+MD-TuM-12 Sub-oxide Ga to Enhance Growth Rate of β-
Ga2O3 by Plasma-assisted Molecular Beam Epitaxy, Zhuoqun Wen, K. 
Khan, E. Ahmadi, University of Michigan, Ann Arbor 

In recent years, there has been significant interest in β-Ga2O3 as a potential 
candidate for the next generation of power electronics, solar-blind 
ultraviolet (UV) detectors, and as a substrate for UV light emitting diodes 
(LEDs). This interest stems from its ultra-wide bandgap of 4.8eV. Thin film 
growth and n-type doping (Si, Sn, Ge) of Ga2O3 have been achieved through 
various methods such as metal-organic chemical vapor deposition 
(MOCVD), pulsed laser deposition (PLD), and molecular beam epitaxy 
(MBE). However, MBE has limitations in terms of the growth rate of Ga2O3 
due to the desorption of volatile Ga2O, which is formed from the reaction 
between Ga and Ga2O3. Using gallium sub-oxide (Ga2O) instead of 
elemental gallium has been previously employed [1] as a technique to 
enhance the growth rate of Ga2O3 by Ozone-MBE. However, this technique 
has not yet been investigated in plasma-assisted MBE. In my talk, I will 
present the results of our recent studies on using Ga2O as Ga source in 
PAMBE. Using the same plasma conditions, we show that using Ga2O 
instead of Ga can at least double the growth rate of Ga2O3. 

Previously, we have demonstrated uniform and controllable silicon doping 
of β-Ga2O3 by utilizing disilane (Si2H6) as the Si source. [2] In my talk, I will 
show that this technique is also compatible with utilizing Ga2O as Ga 
source. The silicon doping can be tuned from 3×1016 cm-3 to 1×1019 cm-3 
using the diluted disilane source. 
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11:30am AC+MD-TuM-13 Microscopic-Scale Defect Analysis on Ga2O3 
through Microscopy, M. Kim, NIST-Gaithersburg, Republic of Korea; A. 
Winchester, O. Maimon, NIST-Gaithersburg; S. Koo, KwangWoon University, 
Korea; Q. Li, George Mason University; Sujitra Pookpanratana, NIST-
Gaithersburg 

Crystalline defects of technologically mature materials have been identified 
and classified by the semiconductor industry [1,2], since it is economically 
beneficial to isolate failure mechanisms at the source rather than relying on 

backend testing. This has significantly improved device reliability. The 
various defects could be categorized into killer or non-killer defects, where 
killer defects can hinder the operation of high-performance devices by 
trapping charge carriers or causing increased leakage current. Although β-
gallium oxide (β-Ga2O3) is expected to surpass silicon carbide (SiC), defects 
in Ga2O3 are prevalent and largely unclassified. Therefore, screening out 
defects that cause electrical device degradation must be solved for 
widespread adoption of β-Ga2O3. 

In this work, photoemission electron microscopy (PEEM) is used to visualize 
micrometer-scale defects and determine their electronic impact. PEEM is 
based on the photoelectric effect and is a non-destructive analysis method 
where light is used to excite and eject electrons from the sample surface 
and these electrons are analyzed. We investigated the defects on 
commercially-available epitaxially-grown β-Ga2O3 on (010) β-Ga2O3 
substrates. The epitaxy was formed by hydride vapor phase epitaxy (HVPE) 
with a target doping of 1x1018 cm-3 on the (010) semi-insulating β-Ga2O3 
wafer. We identified elongated structures on the β-Ga2O3 epi-layer as 
shown in Figure 1a, and they appear in multiple instances of the sample 
surface and in a parallel configuration. These features resemble the “carrot” 
defect observed in SiC epitaxy [3]. From the imaging spectroscopy mode of 
the PEEM (Figure 1b), the base and tip of the carrot were found to have 
similar valence band maxima but dissimilar work functions. The spectra 
from the tip of the carrot resembles that of the surrounding β-Ga2O3 epi-
layer. We are performing ongoing work to identify this feature as a 
microscopic defect. For understanding the electrical influence of these 
elongated features on HVPE epi-layer, we will perform tunneling atomic 
force microscopy (TUNA) to measure the electrical properties on and off 
the defect surface. Together, we will present a discussion on the nature of 
these distinct features and their implication on device performance. 

11:45am AC+MD-TuM-14 Characterization and Processing Improvements 
for Fabricating and Polishing β-Ga2O3 Substrates, Robert Lavelle, D. 
Snyder, W. Everson, D. Erdely, L. Lyle, N. Alem, A. Balog, Penn State 
University; N. Mahadik, M. Liao, Naval Research Laboratory 

As progress continues to be made in fabricating and polishing uniform, 
high-quality β-Ga2O3 substrates, it is increasingly important to link 
commercial suppliers and research groups with expertise in crystal growth, 
substrate processing, epi growth/synthesis, characterization, and devices. 
This creates a vertically integrated feedback loop that drives answering 
fundamental research questions and increasing the manufacturability of 
the substrates. We will review our latest results in optimizing the chemi-
mechanical polishing (CMP) methods and related processing steps for β-
Ga2O3 substrates and materials characterization. This includes quantifying 
and minimizing subsurface damage related to processing, investigating the 
propagation of defects such as nanopipes, fabricating off-cut/off-axis 
substrates, and extending the fabrication/polishing methods to different 
alloy compositions. 
 
Previous results showed that an excellent surface finish (Ra <2 Å over a 
>0.175 mm2 area) could be achieved for Czochralski (Cz) grown β-Ga2O3 
substrates using a two-step CMP process with a nearly 10X reduction in 
polishing cycle time. After continuing to develop this process, we observed 
that a similar surface finish could be achieved by optimizing the pH of the 
colloidal silica slurry while realizing a further 3-4X reduction in cycle time. 
This establishes a path toward a milestone 1-day polishing process for β-
Ga2O3 substrates. While the surface finish is similar, further reduction in 
the FWHM of the x-ray rocking curves (XRRCs) was also obtained by 
reducing the force and optimizing the other polishing parameters during 
the final CMP step. These processing changes suggest improvement in 
polishing related subsurface damage, which we assessed using high-
resolution x-ray diffraction (HRXRD) by varying the x-ray penetration depth 
and advanced microscopy techniques. 
 
Uniformity continues to be an important consideration as commercial 2”+ 
substrates become increasingly available. We continue to map and collect 
characterization data from across substrates grown by Cz and edge-defined 
film-fed growth (EFG) and will share our observations. This includes site-
specific XRRC measurements as well as etch pit density (EPD) mapping and 
defect analysis for full substrates. In this discussion, we will also integrate 
feedback from epi growers for different types of substrates. Finally, we will 
discuss our methodology for processing off-cut/off-axis as well as alloyed 
substrates and latest characterization results. 
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