Program Overview

Room	Jefferson 1 & Atrium	Jefferson 2-3
/Time		
MoP	Poster Sessions	
TuA		DI-TuA: Processes & Devices II

Monday Evening, August 8, 2022

Dielectric Interfaces Room Jefferson 1 & Atrium - Session DI-MoP

Dielectric Interfaces Poster Session

DI-MoP-1 Band Offsets of MOCVD Grown β-(Al0.21Ga0.79)2O3/β-Ga2O3 (010) Heterojunctions, T. Morgan, J. Rudie, M. Zamani-Alavijeh, A. Kuchuk, University of Arkansas; N. Orishchin, F. Alema, Agnitron Technology Incorporated; A. Osinsky, Agnitron Technology Incorporated, United States Minor Outlying Islands (the); R. Sleezer, Minnesota State University at Mankato; G. Salamo, University of Arkansas, United States Minor Outlying Islands (the); Morgan Ware, University of Arkansas

Recently, high quality alloys of β -(Al_xGa_{1-x})₂O₃, have been grown demonstrating excellent properties for use in high power, high frequency, and high voltage systems and devices such as wireless communication, satellite electronics, and electrified transportation. A natural step to follow the formation and study of these alloys is the study of their thin film heterostructures and subsequent devices. In order to support this, the heterostructure band offsets must be known well enough to model device performances. These values will vary slightly with crystal direction, i.e., the growth plane, as will the optimized growth conditions and film quality. Theoretical predictions for the monoclinic (β) aluminum oxide/gallium oxide interface predict a type-II interface with a maximum VBO value of 0.33 eV for Al₂O₃.

The presented study focuses on the stable (010) heterointerface. Several films of high quality β -(Al_{0.21}Ga_{0.79})₂O₃ were grown by metal organic chemical vapor deposition on bulk (010) oriented β -Ga₂O₃.The indirect bandgap of the β-(Al_{0.21}Ga_{0.79})₂O₃ was determined through optical transmission to be 4.69 eV with a direct transition of 5.37 eV, while β -Ga₂O₃ was confirmed to have an indirect bandgap of 4.52 eV with a direct transition of 4.94 eV. Theoretical calculations for this interface predict a type-II band alignment with a small VBO of only 0.08 eV and a conduction band offset (CBO) of 0.4 eV for a fully strained, 21% Al film on (010) β - Ga_2O_3 .Experimentally, in the presented work, the band offsets for this β - $(Al_{0.21}Ga_{0.79})_2O_3/\beta$ -Ga₂O₃ (010) heterojunction were then measured using xray photoelectron spectroscopy. The resulting band alignment was determined to be of type II with the valence and conduction band edges of the β -(Al_{0.21}Ga_{0.79})₂O₃ being -0.26eV and 0.43 eV, respectively above those of the $\beta\text{-}Ga_2O_3$ (010). These values can now be used to help better design and predict the performance of β -(Al_xGa_{1-x})₂O₃ heterojunction-based devices.

DI-MoP-2 Optimization of MOCVD Grown In-situ Dielectrics for β -Ga₂O₃, *G. Wang*, University of Wisconsin - Madison; *F. Alema*, Agnitron Technology Inc.; *J. Chen*, University of Wisconsin - Madison; *A. Osinsky*, Agnitron Technology Inc.; *C. Gupta*, University of Wisconsin-Madison; *Shubhra Pasayat*, University of Wisconsin - Madison

For ultra-WBG semiconductors, the development of dielectrics that can hold a much larger electric field demands high-quality films free of buried charges and traps. For Ga₂O₃, Al₂O₃ has proven to be a promising gate dielectric¹, typically grown using ALD at ~250 °C utilizing trimethylaluminum (TMA) and H₂O as precursors. Recently, MOCVD grown Al₂O₃ on β -Ga₂O₃ was demonstrated [2], using TMA and O₂ precursors but grown at 600 °C, with Ar carrier gas. In this prior work, a lower fixed charge of 2 x $10^{12}~\text{cm}^{-2}$ compared to 3.6 x $10^{12}~\text{cm}^{-2}$ in ALD Al_2O_3 on $\beta\text{-}Ga_2O_3$ was observed². Higher growth temperatures lead to efficient pyrolysis of metalorganic sources like TMA, resulting in lower unintentional C content. The presence of C leads to donor and acceptor level creation, hence low C content allow lower leakage, higher V_{BR} , and reduced interface-state densities of MOS devices³. In addition, dielectrics grown within the MOCVD reactor (in-situ), as opposed to ALD chamber (ex-situ), avoid a regrowth interface, lowering interface-state densities⁴. Using triethylaluminum (TEA) instead of TMA, may improve the quality of in-situ Al₂O₃ as the ethyl radical is readily desorbed from the growth surface by the β -hydride elimination of ethene, reducing the C in Al₂O₃⁵.

In this work, the Al_2O_3 dielectric growth using TEA and O_2 precursors in a 7x2" MOCVD reactor with close injection showerhead is reported, grown at 500-900°C on Sn-doped Ga₂O₃ and Si substrates. A constant TEA flow of 4.75 µmol/min was introduced into the reactor using Ar and N₂ carrier gases while the O₂ flow was varied as 100, 400, and 700 sccm, resulting in growth rates (GR) of 0.6, 1.4, and 1.7 nm/min, respectively. Compared to 1.2 nm/min GR reported using TMA precursor in an R&D MOCVD reactor [2], these GR demonstrate the prospect of TEA as a potential alternative to

further improve the in-situ Al₂O₃ dielectric quality. The influence of N₂ as the sole carrier gas was also studied by introducing a TEA flow of ~3.4 µmol/min at an O₂ flow of 400 sccm, resulting in a 7x lower thickness variation across a 2" wafer without affecting the GR. The C content in Al₂O₃ resulting from TEA and TMA precursors, the use of alternate O precursors like N₂O, the D_{it} and V_{BR} comparison with other in-situ dielectrics like SiO₂ or AlSiO_x will be quantified using CV and IV measurements on MOSCAP structures and reported at the conference.

1. K. D. Chabak *et al.* APL, vol. 109, no. 21, 2016 2. S. Roy *et al.* AEM, vol. 7, no. 11, 2021 3. M. Uenuma *et al.* AIP Adv., vol. 8, no. 10, 2018 4. S. H. Chan *et al.* APEX, vol. 11, no. 4, 2018 5. A. C. Jones, Chem. Soc. Rev. vol. 26, 1997

Tuesday Afternoon, August 9, 2022

Dielectric Interfaces

Room Jefferson 2-3 - Session DI-TuA

Processes & Devices II

Moderator: Hongping Zhao, Ohio State University

3:45pm DI-TuA-9 Dielectric Integration on (010) β -Ga₂O₃: Al₂O₃, SiO₂ Interfaces and their Thermal Stability, *Ahmad Islam*, Air Force Research Laboratory; *A. Miesle*, University of Dayton; *M. Dietz*, Wright State University; *K. Leedy*, *S. Ganguli*, Air Force Research Laboratory; *G. Subramanyam*, University of Dayton; *W. Wang*, Wright State University; *N. Sepelak*, *D. Dryden*, KBR, Inc.; *T. Asel*, *A. Neal*, *S. Mou*, *S. Tetlak*, *K. Liddy*, *A. Green*, *K. Chabak*, Air Force Research Laboratory

Metal-oxide-semiconductor (MOS) devices made using the newest compound semiconductor β -Ga₂O₃ generally do not exhibit high quality, electronic-grade dielectric integration. These are mainly due to the deposition of dielectrics on low-quality substrates. The device fabrication processes also introduce additional defects within the device. The fabricated devices therefore have > 10^{12} cm⁻² defect density and show a large hysteresis during the C-V and I-V characterization and a large AC-DC dispersion during pulse characterization. A reduction of hysteresis and dispersion often uses a high temperature process that compromises the gate leakage and the breakdown strength of the dielectric. Dielectrics in β -Ga₂O₃ devices also loses its integrity when devices are subjected to high temperature, extreme environment applications.

Here, we will highlight the general challenge for integrating dielectrics on β -Ga₂O₃, address the associated requirements for obtaining high-quality dielectric and dielectric/ β -Ga₂O₃ interface, and present our recent works on the integration of Al₂O₃and SiO₂ dielectrics on (010) β -Ga₂O₃ [1]. We will show how surface roughness can play key role in controlling interface defect density in β -Ga₂O₃ MOS capacitors. We will also discuss the role of surface cleanliness (using, for example, piranha treatment), the removal of surface defective layer using HF, and the role of post-deposition annealing in reducing interface defect density [2]. Finally, we will compare the thermal stability of SiO₂ and Al₂O₃deposited on (010) β -Ga₂O₃ substrates [3]. All these considerations will eventually allow electronic-grade integration of dielectrics on β -Ga₂O₃substrates needed to attain high breakdown voltage in power electronics applications and also to attain low AC-DC dispersion and high operating frequency in RF applications.

[1] Islam *et al.*, "Integration challenges for dielectric on β -Ga₂O₃ and their solutions," Proc. of *GOMACTech*, 2022, P31.

[2] Islam *et al.*, "Hysteresis-free MOSCAP made with $Al_2O_3/(010)\beta$ -Ga₂O₃ interface using a combination of surface cleaning, etching and postdeposition annealing," Proc. of *DRC*, 2021, p. 9467169.

[3] Islam et al., "Thermal stability of ALD-grown SiO₂ and Al₂O₃ on (010) β -Ga₂O₃ substrates," Accepted, DRC, 2022.

4:00pm DI-TuA-10 Deep Etch Field-Terminated β -Ga₂O₃ Schottky Barrier Diodes With 4.2 MV/cm Parallel Plate Field Strength, *Sushovan Dhara*, *N. Kalarickala*, *A. Dheenan*, *C. Joishi, S. Rajan*, The Ohio State University

 β -Ga₂O₃ Schottky barrier diodes (SBDs) [1-2] are promising devices for nextgeneration kV-class power switching. In this work, we analyze the effect of BCl₃/Cl₂ based dry etch on [100] and [010] etched vertical sidewalls and demonstrate a deep mesa etch design for efficient edge termination leading to parallel plate fields in excess of 4 MV/cm. We also report on significant depletion of the semiconductor to depths up to several 10's of micron, and remarkable anisotropy in this depletion. The work demonstrated here provides insight into the impact of etching on n-type Ga₂O₃, and shows a promising method to realize efficient field termination for high breakdown field strength SBDs.

Experimental: The SBDs reported here were fabricated on commercially available (001) n-doped β -Ga₂O₃ layers grown by halide vapor phase epitaxy (HVPE). To analyze etch damage in the etched vertical sidewall planes ([010], [100]), rectangular SBD patterns with varying lengths along (100) and (010) directions were designed and etched (~ 4 μ m) in ICP-RIE using BCl₃/Cl₂ with the Pt anode metal as the hard mask. Two terminal reverse breakdown showed breakdown voltages of -1150 V (4.23 MV/cm) for the mesa edge terminated devices, whereas the planar devices broke at -530 V (2.87 MV/cm). The removal of material during the etch reduces image charges, and therefore enables very efficient field termination.

Analysis of the forward conduction characteristics shows some unusual effects of the plasma exposure creating deep lateral depletion on the order of 10's of microns. Rectangular mesa devices fabricated with the sidewalls as (010) planes were more susceptible to lateral depletion - devices with less than 100 µm spacing between the (010) sidewalls were very resistive. On the other hand, such deep lateral depletion was not seen from the (100) sidewall. We conclude that the plasma exposure of (010) planes leads to the diffusion laterally into the material, creating defects deep inside the material. A possible reason for this could be the diffusion of BCl₃/Cl₂ etch radicals along the (010) direction[3]. This is the first report of the anisotropic and remarkably deep depletion caused by plasma etching in Ga₂O₃. The high parallel plate field (> 4 MV/cm) also suggests that with proper control, deep etching can be a promising way to achieve field termination Ga₂O₃ SBDs. in

We acknowledge funding from DOE / National Nuclear Security Administration under Award Number(s) DE-NA000392, and AFOSR GAME MURI (Award No. FA9550-18-1-0479, project manager Dr. Ali Sayir).

 References:
 [1] W. Li, et al., IEEE EDL,2020.
 [2] Z. Xia et al., APL,2019.
 [3] G.

 Alfieri
 et
 al.,
 JAP.,2021.

4:15pm DI-TuA-11 Demonstration of Low Thermal Resistance in Ga₂O₃ Schottky Diodes by Junction-Side-Cooled Packaging, Boyan Wang, M. Xiao, J. Knoll, Y. Qin, Virginia Polytechnic Institute and State University; J. Spencer, M. Tadjer, U.S. Naval Research Laboratory; C. Buttay, Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, France; K. Sasaki, Novel Crystal Technology, Japan; G. Lu, C. DiMarino, Y. Zhang, Virginia Polytechnic Institute and State University

Ga₂O₃ is a promising candidate for power electronics and RF applications, whereas a fundamental limitation of Ga₂O₃ is its low thermal conductivity (k_T). This work studies the impact of the packaging process on Ga₂O₃ device characteristics and measures the junction-to-case thermal resistance ($R_{\rm HC}$) of a 15 A double-side-packaged vertical Ga₂O₃ Schottky barrier diode (SBD) under the bottom-side-cooling and junction-side-cooling schemes.

Fig. 1. shows the schematic and photo of the packaged Ga_2O_3 SBD, device fabrication process [1], and the device structure. 100-nm Ti and 200-nm Ag were deposited on both anode and cathode as the contact layer for silver sintering. Besides serving as an adhesion layer, Ti also functions as a barrier layer to prevent Ag diffusion into Schottky metal in the subsequent sintering process.

Die attach is performed using a pressureless sintering process in air, using a nano-silver paste. The paste is stencil-printed through a 70 μ m thick, lasercut mask. The size of the silver print is increased from 2.5×2.5 mm², the size of the mask opening, to about 3×3 mm². Once sintered, the assembly is encapsulated in a silicone elastomer for isolation. Fig. 2 summarizes the packaging process.

Fig. 3 shows the forward I-V, reverse C-V and I-V characteristics of the packaged Ga_2O_3 SBD, revealing a turn-on voltage V_{on} of 0.9 V, a forward current of 15 A at 2.15 V, an on/off ratio of 10^{10} extracted at 2 V/0 V, and a breakdown voltage of about 600 V.

Fig. 4 shows the I-V characteristics of the Ga_2O_3 SBD before and after packaging. After packaging, the V_{on} increases, the differential on-resistance reduces, and both forward and reverse leakage current decreases. These shifts are believed to be due to the improvement of the Schottky contact after the 250°C sintering process.

The $R_{\theta | C}$ measurement is detailed in [2], following the transient dual interface method, i.e., JEDEC 51-14 standard. Fig. 5 shows our $R_{\theta | C}$ measurement set-up, the bottom- and junction-cooling measurements of the same packaged Ga₂O₃ SBD. Fig. 6 shows a much lower $R_{\theta | C}$ (0.5 K/W) under junction-side cooling as compared to the $R_{\theta | C}$ (1.43 K/W) under the bottom-side cooling.

Table I benchmarks the $R_{\rm BJC}$ of our Ga₂O₃ SBDs against commercial 600-V SiC SBDs with a similar current rating and different TO-series packages. The $R_{\rm BJC}$ of our junction-side cooled Ga₂O₃ SBD is lower than that of the commercial SiC SBDs with similar package size and current rating. This shows the low $k_{\rm T}$ of Ga₂O₃ can be overcome by packaging solutions.

[1] APL, vol. 115, no. 26, p. 263503, 2019.

[2] IEEE EDL, vol. 42, no. 8, pp. 1132-1135, 2021.

Tuesday Afternoon, August 9, 2022

4:30pm DI-TuA-12 High Temperature In-situ MOCVD-grown Al₂O₃ Dielectric on (010) β-Ga₂O₃ with 10 MV/cm Breakdown Field, Saurav Roy, University of California Santa Barbara; A. Bhattacharyya, University of Utah; C. Peterson, S. Krishnamoorthy, University of California Santa Barbara We report on the growth and characterization of in-situ Al₂O₃ on (010) β -Ga₂O₃ using metalorganic chemical vapor deposition (MOCVD). The in-situ Al₂O₃ deposition provides an in-situ passivation to the underlying epitaxial β -Ga₂O₃ layer and protects the semiconductor surface from undesired contaminants. The MOCVD growth of Al₂O₃ also facilitates high temperature dielectric deposition compared other conventional techniques, which is known to enhance the bulk and interface quality of the dielectric. The growth of β -Ga₂O₃ was performed in an Agnitron MOVPE reactor with far injection showerhead design using Triethylgallium and Oxygen as precursor gas at a growth temperature of 600 °C, which is followed by the growth of Al_2O_3 layer at the growth temperature of 810 $^{\circ}C$ inside the same chamber using Trimethylaluminum and O₂ as precursors without breaking the vacuum. Thickness of the grown Al₂O₃ layer was extracted to be 23 nm using Xray reflectivity measurements. Using capacitance voltage (CV) measurements, the dielectric constant of the Al_2O_3 layer was extracted to be ~8. The fast and slow near interface traps at the in-situ Al₂O₃/β-Ga₂O₃ interface were characterized using stressed CV measurements on metal oxide semiconductor capacitor (MOSCAP) structures. The sheet density of near interface trap states with fast and slow emission times were also calculated to be 8.3 x 10¹¹ cm⁻² and 1.5 x 10¹¹ cm⁻² respectively. The density of the interface states (initially filled and unfilled) and bulk oxide hole traps (Dt) and their energy dependences were calculated to be 5.4 x 10¹¹ cm⁻² eV⁻¹ using deep ultra-violet assisted CV technique, which is significantly lower than the ALD Al₂O₃/ β -Ga₂O₃ interface from literature. Furthermore, the breakdown voltage and leakage currents for the in-situ Al₂O₃/β-Ga₂O₃ MOSCAPs were evaluated using forward and reverse IV characteristics. In the accumulation regime with forward bias, the entire electric field drops across the oxide layer. An average peak breakdown field of approximately 10.2 to 10.6 MV/cm underneath the center of the anode is evaluated. High breakdown field in combination with a dielectric constant close to β -Ga₂O₃, makes this an excellent dielectric/semiconductor platform for high performance device applications. This approach of in-situ dielectric deposition on β -Ga₂O₃ can pave the way as gate dielectrics for future β -Ga₂O₃ based high performance MOSFETs due to its promise of improved interface and bulk quality compared to other conventional dielectric deposition techniques. We acknowledge funding from AFOSR MURI program under Award No. FA9550-21-0078 (PM: Dr. Ali Sayir).

4:45pm DI-TuA-13 Metal Oxide (PtOX) Schottky Contact with High-k Dielectric Field Plate for Improved Field Management in Vertical β-Ga2O3 Devices, Esmat Farzana, University of California Santa Barbara; A. Bhattacharyya, The University of Utah; T. Itoh, S. Krishnamoorthy, J. Speck, University of California Santa Barbara

 β -Ga₂O₃ has emerged interest in high-power electronics due to its high breakdown field (8 MV/cm) and melt-grown substrates. To extract the full potential of β-Ga₂O₃ devices, high reverse blocking capability and field management are fundamental requirements. However, this is challenging in β -Ga₂O₃ due to absence of its p-type that limits high barrier formation in critical field regions. Hence, to enhance the β -Ga₂O₃ diode performance, it is important to have high Schottky barrier material at surface as well as efficient field-plate dielectric. Toward this goal, we developed metal oxide (PtO_x) Schottky contact with high- κ dielectric (ZrO₂) field plate in vertical β -Ga₂O₃ devices to support high electric field at both surfaces and edges. Vertical field-plate Schottky diodes were fabricated at UCSB with HVPE (001) 10 μ m β -Ga₂O₃ epitaxy (doping ~2×10¹⁶ cm⁻³). The devices had Ti/Au ohmic and Pt cap/PtO_x Schottky of 100 μ m diameter. The PtO_x was formed by reactive sputtering of Pt and oxygen. The field plates were investigated with different lengths, 15 μ m and 30 μ m, with sputter deposited dielectric ZrO₂ (~215 nm). The ZrO₂ was chosen for its ~1.2 eV conduction band offset with β -Ga₂O₃, breakdown field >3 MV/cm, and dielectric constant of ~23. The PtO_xSchottky properties were first characterized with current-voltage (I-V) and capacitance-voltage (C-V), and compared with that of Pt/β -Ga₂O₃ from the same HVPE β -Ga₂O₃ sample. The PtO_x Schottky had a significantly higher barrier height of ~2.1 eV from both I-V and C-V compared to that of Pt with 1.35 eV (I-V)/ 1.6 eV (C-V). The similar barrier height for PtOx from I-V and C-V indicates its homogeneous interface. The forward current of the field-plate PtO_x diodes also showed near unity ideality factor (1.17) and onoff ratio of ~10¹¹. The minimum specific on-resistance of the PtO_x diodes was 2.6, 2.36, and 2.3 m Ω -cm² for devices without field plate, with field plate lengths of 15 μ m, and 30 μ m respectively. The reverse breakdown of

the diodes was characterized at the Univ. of Utah. A maximum breakdown voltage (V_{br}) of 947 V was obtained with 30 µm field plate whereas the diode with 15µm field plate and without field plate showed V_{br} of 882 V and 520 V, respectively. The consistent increase of V_{br} with field plates indicates their field management efficacy. SILVACO simulation showed a peak electric field of 5.12 MV/cm in β -Ga₂O₃ and 3.5 MV/cm in ZrO₂ at V_{br}~950V. The BFOM (0.4 GW/cm²) of our diodes is comparable or better than most of the reports. As the ZrO₂ breakdown limited to reach the full potential of β -Ga₂O₃, future work will include high breakdown dielectric to further improve the device performance.

5:00pm DI-TuA-14 Field Plated β-Ga₂O₃ Mis Diodes with High-κ Tio₂ Interlayer for Increased Breakdown and Reduced Leakage Current, Nolan Hendricks, Air Force Research Laboratory; UC Santa Barbara; A. Green, A. Islam, K. Leedy, K. liddy, J. Williams, Air Force Research Lab; E. Farzana, J. Speck, UC Santa Barbara; K. Chabak, Air Force Research Lab

β-Ga₂O₃ (BGO) is an ultra-wide bandgap (~4.8 eV) semiconductor with disruptive potential for power electronics due to its predicted breakdown field of 8 MV/cm, ease of n-type doping, and availability of melt-grown native substrates. With no p-type doping, Schottky barriers are essential to limit reverse leakage current in rectifying BGO devices. However, reverse leakage current due to thermionic field emission in such devices exceeds the practical limit of 1 mA/cm² at surface fields (\mathcal{E}_{surf}) <5 MV/cm for barrier heights <2.2 eV, limiting the potential benefits of BGO. It is desirable to find a solution for reducing leakage current in diodes without efficiency losses from increased turn-on voltage (Von) or specific on-resistance (Ron,sp). TiO₂ is a high κ (~60) dielectric with a conduction band edge ~0.3 eV *lower* than BGO, presenting the potential for use in metal-interlayer (MIS) diodes to provide a wider tunneling barrier with no increased barrier height for forward conduction.

Pt/TiO₂/β-Ga₂O₃ MIS diodes and Schottky barrier diodes (SBDs) with and without field plates were fabricated on ~5 μm, $6x10^{16}$ cm⁻³ (001) HVPE BGO on an n+ BGO substrate. A back side Ti/Au contact was RTA annealed at 470 °C for 60 s in N₂ ambient. TiO₂ (4.5 nm) was deposited by atomic layer deposition and removed with BOE in areas for SBDs. Pt/Au anode contacts were deposited, followed by 200 nm PECVD SiO₂ and Ti/Au field plate metal with 20 μm overhang.

Forward current-voltage (I-V) behavior was measured for all device types. An ideality factor of 1.08 and 1.09 was fitted for SBDs and MIS diodes respectively. The minimum differential $R_{on,sp}$ was \leq 1.2 m Ω ·cm² in all devices, and V_{on} extrapolated from the linear I-V was similar between the SBDs and MIS diodes at 1.4 V.

The leakage current and breakdown of the devices were measured under reverse bias. The SBDs experienced catastrophic breakdown at 453 V (no FP) and 495 V (FP), and both reached 1 mA/cm² leakage current at 235 V, corresponding to an \mathcal{E}_{surf} of 2.3 MV/cm. The MIS diodes experienced breakdown at 552 V (no FP) and 666 V (FP). 1 mA/cm² leakage current was observed at 408 V (no FP) and 574 V (FP), with corresponding \mathcal{E}_{surf} estimated to be 3.0 MV/cm and 3.5 MV/cm respectively. The BFOM of the field plated MIS diode was 370 MW/cm² for hard breakdown and 270 MW/cm² when limited to 1 mA/cm² leakage current, both of which are the best reported in their respective categories for BGO MIS diodes. The substrate resistance is expected to be ~0.9 mΩ·cm², so similarly fabricated devices with lower parasitic resistance are expected to achieve a BFOM >1 GW/cm² with leakage <1 mA/cm².

Author Index

Bold page numbers indicate presenter

Alema, F.: DI-MoP-1, 2; DI-MoP-2, 2 Asel, T.: DI-TuA-9, 3

-B-

Bhattacharyya, A.: DI-TuA-12, 4; DI-TuA-13, 4 Buttay, C.: DI-TuA-11, 3

- C -Chabak, K.: DI-TuA-14, 4; DI-TuA-9, 3 Chen, J.: DI-MoP-2, 2

— **D** —

Dhara, S.: DI-TuA-10, 3 Dheenan, A.: DI-TuA-10, 3 Dietz, M.: DI-TuA-9, 3 DiMarino, C.: DI-TuA-11, 3 Dryden, D.: DI-TuA-9, 3

— F —

Farzana, E.: DI-TuA-13, 4; DI-TuA-14, 4 — G —

Ganguli, S.: DI-TuA-9, 3 Green, A.: DI-TuA-14, 4; DI-TuA-9, 3 Gupta, C.: DI-MoP-2, 2

— H — Hendricks, N.: DI-TuA-14, 4

Islam, A.: DI-TuA-14, 4; DI-TuA-9, 3 Itoh, T.: DI-TuA-13, 4

— I -

— I Joishi, C.: DI-TuA-10, 3

-K -Kalarickala, N.: DI-TuA-10, 3 Knoll, J.: DI-TuA-11, 3 Krishnamoorthy, S.: DI-TuA-12, 4; DI-TuA-13,

-L –

— M —

Kuchuk, A.: DI-MoP-1, 2

4

Leedy, K.: DI-TuA-14, 4; DI-TuA-9, 3 liddy, K.: DI-TuA-14, 4 Liddy, K.: DI-TuA-9, 3 Lu, G.: DI-TuA-11, 3

Miesle, A.: DI-TuA-9, 3 Morgan, T.: DI-MoP-1, 2 Mou, S.: DI-TuA-9, 3

— N -

Neal, A.: DI-TuA-9, 3

Orishchin, N.: DI-MoP-1, 2 Osinsky, A.: DI-MoP-1, 2; DI-MoP-2, 2

– P –

Pasayat, S.: DI-MoP-2, 2 Peterson, C.: DI-TuA-12, 4 Qin, Y.: DI-TuA-11, 3 — R —

Rajan, S.: DI-TuA-10, 3 Roy, S.: DI-TuA-12, 4 Rudie, J.: DI-MoP-1, 2

— S -Salamo, G.: DI-MoP-1, 2 Sasaki, K.: DI-TuA-11, 3 Sepelak, N.: DI-TuA-9, 3 Sleezer, R.: DI-MoP-1, 2 Speck, J.: DI-TuA-13, 4; DI-TuA-14, 4 Spencer, J.: DI-TuA-11, 3 Subramanyam, G.: DI-TuA-9, 3

Tadjer, M.: DI-TuA-11, 3 Tetlak, S.: DI-TuA-9, 3

- W —

- Т —

Wang, B.: DI-TuA-11, 3 Wang, G.: DI-MoP-2, 2 Wang, W.: DI-TuA-9, 3 Ware, M.: DI-MoP-1, 2 Williams, J.: DI-TuA-14, 4

-X-Xiao, M.: DI-TuA-11, 3

-7 -Zamani-Alavijeh, M.: DI-MoP-1, 2 Zhang, Y.: DI-TuA-11, 3