

Fig.1.: Müller matrix element M_{32} for EPR ellipsometry scans of β -Ga₂O₃ at 155GHz at different azimuthal sample orientation. The (-201) oriented sample was measured at 45° angle of incidence with the magnetic field B parallel to the incident light. The sample was rotated about its surface normal starting from B being parallel to the monoclinic plane close to the *c** direction of the crystal (0°). The signature of Fe³⁺ (s=5/2) incorporated at different lattice sites is recognized as two quintuplets in each scan.

$$H = \mu_B \vec{B}g\vec{s} + \sum_{\substack{k=2\\k \text{ even } q \text{ even}}}^4 \sum_{\substack{q=-k\\q \text{ even }}}^k B_k^q O_k^q$$

Eq.1: Spin Hamiltonian for a monoclinic s=5/2 electronic system (without nuclear spin) with highsymmetry direction parallel to z in terms of Stevens (equivalent) operators O_k^q and coefficients B_k^q . The first term is the normal Zeeman splitting with Bohr magneton μ_B , magnetic field \vec{B} , g-factor tensor g, and spin \vec{s} . Terms with k = 4 would vanish for s=3/2, terms with negative indices q would vanish for orthorhombic systems under appropriate choice of the coordinate system. For a truly monoclinic s=3/2 systems, B_2^{-2} would be zero in a coordinate system where g would not be diagonal. For Fe³⁺ in Ga₂O₃ (Fig.1), $B_4^{\pm 2,4}$ turn out to be nonnegligible.