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Advances in AI and Machine Learning within the 
Semiconducting Industry 
Moderator: Erica Douglas, Sandia National Laboratories 

4:00pm EM2+AIML+AP+CPS+MS+SM-TuA-8 Improved Design-of-
Experiments and Process Modeling with Generative AI, Somilkumar Rathi, 
Muthiah Annamalai, Panmo LLC 

Small volume semiconductor, photonic and materials manufacturing largely 
uses One-Factor at-a time (OFAT) to discover process window instead 
Design of Experiments (DOE). We demonstrate, Panmo Confab, a 
Generative AI based DOE and process-flow-design platform to accelerate 
process window discovery. Large volume semiconductor, photonic and 
materials automation tools have relied on statistical process control (SPC), 
design of experiments (DOE) and yield modeling techniques which are fairly 
manual and depend on specialized tools and deep knowledge [1,2]when 
such tools are not used we get a sub-optimal outcomes for process 
development teams through using one-factor at a time (OFAT). In this 
article we report, and demonstrate, Panmo Confab a Generative AI based 
process flow tracking and design of experiments platform to accelerate flow 
designs and generating DOEs. Previously our tool was used without 
Generative AI, features to show improvement in process discovery for 
plasmonic nanocavity fabrication [4]. The unique innovation of our tool is to 
use the emerging technology of large language models (LLM), like BERT or 
ChatGPT [5,6] and science of causality [3] to enable generation of process 
flows with a description. Our tool is presented in both on-premises and 
Software-as-a-Service (SaaS) formats. 
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4:15pm EM2+AIML+AP+CPS+MS+SM-TuA-9 Foundation Models in 
Semiconductor R&D: A Study on Segment Anything, Fei Zhou, Sandisk 
Corporation 

Quantitative analysis of scanning and tunneling electron images is crucial in 
semiconductor manufacturing, particularly for defect detection, process 
margin checking, and morphology quantification. Traditional AI/ML 
approaches, such as using recurrent neural networks, require large labeled 
datasets and extensive transfer learning to generalize across different 
imaging conditions. Developing a usable AI tool for proof-of-concept 
demonstrations demands significant engineering effort and GPU resources, 
making these methods costly and time-consuming. These challenges are 
especially pronounced in semiconductor R&D, where fast turnaround, high 
accuracy, and efficient use of engineering resources are essential. 

The Segment Anything Model (SAM) introduces a novel training free 
segmentation approach, eliminating the need for task-specific retraining 
while providing robust and efficient segmentation across diverse 
semiconductor imaging requirements. This paper explores SAM’s 
application in semiconductor image analysis, demonstrating its ability to 
segment complex nanoscale features without prior dataset exposure. We 
assess SAM’s performance in automated defect detection, where 
challenges such as varying defect morphology, background noise, and 
process-induced variations exist. With appropriate prompting and post-
processing techniques, SAM adapts to different imaging conditions, offering 
a rapid, low-cost, and high-accuracy solution. 

Additionally, we examine SAM’s limitations, particularly in scenarios where 
the region of interest is small and contains limited useful pixel data. By 
employing image enhancement techniques, we demonstrate how SAM can 
effectively segment defects even in low-information conditions. 
Furthermore, we explore how integrating grounding techniques with SAM 

can expedite segmentation post-processing, further improving efficiency in 
real-world applications. 

Our case studies show that SAM significantly reduces resource overhead 
and enables semiconductor image analysis automation, achieving saving of 
>100 engineering hours and >20 GPU hours per project. Its foundation 
model architecture allows it to generalize across different defect types, 
backgrounds, and imaging techniques without additional data labeling or 
fine-tuning. These findings suggest that integrating SAM into 
semiconductor workflows enhances efficiency, lowers costs, and 
accelerates R&D decision-making by providing a scalable and cost-effective 
solution for high-precision image segmentation. This study highlights the 
transformative potential of foundation models in semiconductor 
engineering, paving the way for broader adoption of AI-driven automation 
across the industry. 

4:30pm EM2+AIML+AP+CPS+MS+SM-TuA-10 MOFCreatioNN: A Novel 
Modular Machine Learning Approach for Designing 'Undesignable' Metal-
Organic Frameworks. , Satya Kokonda, Charter School of Wilmington 

Many critical material discovery processes remain too complex for 
traditional computational modeling, necessitating costly and time-intensive 
experimentation. Here, we present a generalizable, application-driven 
methodology for material design, demonstrated through a case study in 
photocatalysis. Using a reinforcement learning ensemble, we generated 
120,000 novel metal-organic frameworks (MOFs) optimized for CO₂ heat of 
adsorption and CO₂/H₂O selectivity. A multi-objective fitness function—
incorporating stability, catalytic potential, cost, sustainability, and 
adsorption properties—enabled computational modeling of photocatalytic 
performance aligned with industrial criteria. To enhance efficiency and 
prevent feature overfitting, a predictor funnel system iteratively filtered 
low-scoring candidates, narrowing the search space to 17,315 MOFs and 
improving computational efficiency by 313%. Our system, MOFCreatioNN, 
designed two high-performing, de novo MOFs: a Cr-based MOF with a 
photocatalyst score 239% higher than the control, and a Mn-based MOF 
that outperformed all baselines across every evaluated metric, 
demonstrating robustness against imperfect fitness functions. The 
proposed MOFs meet key synthesis and operational thresholds—including 
X-ray diffraction consistency with known structures, predicted 
synthesizability, temperature stability >300°F, and viable water stability—
making them practical for real-world applications. Furthermore, we identify 
actionable design heuristics, such as the significant impact of the N₂62 
metal cluster on photocatalytic performance. By integrating industrial 
considerations such as cost, stability, and environmental viability into the 
modeling process, this work showcases a scalable framework for the AI-
driven design of industrially relevant materials in domains previously 
considered computationally intractable. 
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Plasma Modelling AI/ML 
Moderators: Kenji Ishikawa, Nagoya University, Japan, Angelique Raley, 
TEL Technology Center, America, LLC 

2:15pm PS+AIML-ThA-1 Machine Learning for Low Temperature Plasma 
Applications, Abhishek Verma, Kallol Bera, Shahid Rauf, Applied Materials, 
Inc. INVITED 

Low temperature plasmas are used for numerous depositions and etch 
applications in the semiconductor industry. The field is rapidly advancing 
driven by volumes of multimodal and complex spatiotemporal data from 
both experiments and simulations. Machine learning in combination with 
plasma modeling and simulation offers a wealth of techniques that could 
play key role in plasma source discovery, design and decision making. These 
techniques can also augment domain knowledge for plasma reactor control 
and process development. In this talk, we present our work on machine 
learning applications to modeling, control, and optimization of plasma 
chambers. To overcome the challenge of high computational cost 
associated with high fidelity plasma models for rapid and many-query 
analyses, we present a deep learning based non-linear surrogate modeling 
method. Our numerical experiments on capacitively coupled plasmas show 
that deep learning-based model can learn an efficient latent space 
representation of spatiotemporal features of plasma characteristics. 
Moreover, we extended this approach with physics informed neural 
networks to improve predictive accuracy and generalization while being 
data efficient. Physics informed approaches could also effectively 
incorporate expert knowledge while learning physics implicitly. 
Furthermore, we present application of regression methods for circuit 
estimation of collisional sheath in moderate pressure capacitively couple 
plasmas. The novel sheath model which includes collisional effects, ion 
current responses to sheath voltage and harmonics based resistive 
elements, builds on parametric flexibility using machine learning while 
maintaining interpretability. The talk outlines machine learning 
methodologies for modeling, optimizing, and controlling plasmas for 
semiconductor applications. 

2:45pm PS+AIML-ThA-3 Contour-Based Objectives for Robust Etch Model 
Selection, Chad M. Huard, Prem Panneerchelvam, Shuo Huang, KLA; Lewis 
Hill, Janet Hopkins, KLA UK; Mark D. Smith, KLA 

As device scaling increasingly relies on 3D rather than CD scaling, etch has 
become a critical and challenging step, often limiting further scaling. The 
demand for high-quality, predictive etch models is growing, yet our 
understanding of surface mechanisms during dry etching remains limited. 
Techniques like XPS, SIMS, and AES provide clues to surface reactions, but 
the pathways are not immediately clear. First-principles computational 
methods such as DFT, quantum MD, and classical MD offer insights but are 
constrained by computational resources and turnaround times.We present 
a Monte Carlo profile model that bridges the gap between first-principles 
and empirical models by using simplified chemistry mechanisms calibrated 
with experimental data. Traditional models often rely on 'best-effort' 
mechanisms, risking calibration issues due to high dimensionality or model 
errors due to omission of critical pathways. We propose a unified method 
for evaluating etch mechanisms using rigorous contour-based objectives, 
which maximizes entitlement from metrology data and results in better 
model development/selection compared to gauge-based metrics. This 
approach identifies the simplest model that fits the data, addresses 
degeneracy in models and calibration objectives, and enhances model 
predictiveness. 

3:00pm PS+AIML-ThA-4 NAND Pillar Etch: Plasma and Feature Profile 
Modeling in Dry Etch Process, Harutyun Melikyan, Ebony Mays, NAND 
Pathfinding - Micron Technologies; Ali Bhuiyan, Sumeet Pandey, Advanced 
Modeling - Micron Technologies; Jagannath Mahapatra, Micron 
Technologies, USA 

In this work we developed a model to study the Feature Profile Modeling 
(FPM) in the dry etch plasma process for NAND pillar etch. The model 
developed takes in process parameters, that is process knobs such as 
temperature, pressure, flowrates, Power, Frequency, Voltage as inputs. The 
output from the model is Feature profile information such as Etch rate, Etch 
Depth, Variation of CD with height, Twisting, Ellipticity, Necking (HM), 
Bowing (ONO) etc. This methodology makes possible the ability to correlate 
process knobs on an equipment directly to the feature profile. This can 

enable us to get a detailed sensitivity analysis of feature profile with 
respect to process knob on the equipment (like constructing a sort of digital 
twin for that equipment). In addition, the feature profile (for HAR) for the 
future nodes can be inferred from process knobs and recipe information 
even before running the experiments. 

3:15pm PS+AIML-ThA-5 Machine Learning of Simulated Nanosecond UV 
Laser Ablation Plumes, Jacob Paiste, University of Alabama at Birmingham; 
Sumner Harris, Oak Ridge National Laboratory; Shiva Gupta, University of 
Alabama at Birmingham; Eric Remington, Samford University; Robert 
Arslanbekov, CFDRC Research Corporation; Renato Camata, University of 
Alabama at Birmingham 

Laser-generated plasmas are a rich laboratory of complex spatiotemporal 
phenomena emerging from coupled thermodynamic, electromagnetic, and 
quantum mechanical processes. The strength of laser-solid and laser-
plasma interactions can vary over multiple orders of magnitude while 
gradients of density, temperature, and flow velocity give rise to shocks, 
instabilities, and turbulence in multiphase flows. Deep learning can be used 
to encode these complex spatiotemporal dynamics to discover correlations 
between the conditions under which a laser-generated plasma is 
produced—including the wide chemical and thermophysical diversity of 
ablation targets—and the resulting plasma flows. Predictive models can 
then be built to infer the fundamental properties of irradiated solids and 
plasmas, enabling a new experimental modality for measuring material 
properties like thermal conductivity or critical temperature. However, no 
databases of experimental or simulated laser-generated plasmas currently 
exist, so proof-of-concept for the efficacy of deep learning for this task is 
difficult to obtain. 

In this work, we carry out a deep learning study on synthetic laser-
generated plasma data. The synthetic data sets are produced using a 
combined laser ablation-fluid dynamics simulation based on the Hertz-
Knudsen model, including phase explosion when a target temperature 
exceeds the thermodynamic critical temperature. The model is 
implemented on an open-source Adaptive Cartesian Mesh framework that 
enables laser ablation plume simulations out to centimeter distances over 
tens of microseconds for any elemental material with well-defined 
thermophysical parameters. 

We generate a training dataset by simulating UV nanosecond pulsed laser 
ablation of elemental targets of Be, B, Na, Mg, Al, Sc, Ti, V, Fe, Co, Cu, Zn, 
Rb, Cs, Ta, W, and Pt with systematic variation of laser fluence (1–10 J/cm2) 
and laser spot area (0.8–13 mm2). We use (2+1)D convolutional neural 
networks (CNNs) to encode spatiotemporal plume dynamics for regression 
and classification problems using our simulated data. Results indicate that 
given a plume image sequence and associated laser parameters, we can not 
only predict which element the plasma was generated from with high 
confidence but also predict the set of thermophysical properties of the 
material. These results serve as proof-of-principle for plasma plume 
dynamics as strong predictors of fundamental material properties and 
motivate new experimental measurement techniques using laser ablation. 

4:00pm PS+AIML-ThA-8 PSTD Business Meeting & Awards Ceremony,  
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AI/ML for Scientific Discovery Poster Session 

AIML-ThP-1 AI Agents for Semiconductor Processing: A New Benchmark 
for Autonomous Materials Synthesis, Angel Yanguas-Gil, Argonne National 
Laboratory 

Over the past year there has been an increasing interest in leveraging 
foundation and large language models to design AI agents that can interact 
withexperiments to solve materials science and synthesis problems. One of 
the challenges of this approach is that testing the performance of these 
agents require access to automated labs. In contrast to benchmarks testing 
abilities such as knowledge, math skills, or reasoning, there is a lack of 
benchmarks that can help both design and evaluate agents without the 
access to dedicated experimental facilities. 

In this work, we introduce Semibench, a benchmark to evaluate AI agents' 
ability to operate and solve synthesis challenges in the context of 
semiconductor processing. This benchmark introduces two core ideas: first, 
it introduces virtual tools that simulate the output of real life experiments. 
This allows us to test an agent's ability to solve a wide range of challenges 
involving different tool configurations, amount and nature of information 
that is accessible, and process complexity. Second, it focuses on the 
concept of microtasks, challenges designed to have a unique solution. This 
allows us to define quantitative performance metrics for the agent based 
on how far the proposed solution is to the ground truth. For Semibench, we 
have focused on three different techniques that are commonly used in the 
context of microelectronics: atomic layer deposition, sputtering, and 
reactive ion etching. For each challenge in the benchmark, agents are 
exposed to a collection of virtual tools and asked to solve specific questions 
by providing a sequence of synthesis steps. These steps involve selecting 
the right configurations for each of the tools, such as the precursor 
channels in the case of ALD, or the targets and power for sputtering, or the 
etching recipe for RIE. 

We have applied this benchmark to agents based on leading large language 
models, such as OpenAI's o1 an o3 family of reasoning models. The results 
show that these agents can correctly identify the sequence of steps in a 
wide range of conditions. However, they struggle when they need to use 
quantitative data that is not provided explicitly to solve these challenges. 
These results provide useful information about how to design useful 
models and their limitations for thin film applications. 

AIML-ThP-2 Domain Knowledge + AI for Chemically Accurate Potentials: 
Application to Diamond Surfaces, John Isaac Enriquez, Princeton 
University Plasma Physics Lab; Yoshitada Morikawa, Osaka University, 
Japan; Igor Kaganovich, Princeton University Plasma Physics Lab 

Machine learning interatomic potentials (MLIPs) are powerful tools for 
accelerating atomistic simulations, but their reliability depends critically on 
training set construction. A common strategy is to build universal MLIPs 
from open-source databases, offering transferability but often sacrificing 
accuracy particularly in surfaces and interfaces with highly diverse chemical 
environments. These databases are dominated by equilibrium structures, 
leaving reaction pathways undersampled, forcing potentials to extrapolate 
in chemically critical regions—a limitation in catalysis, surface chemistry, 
and defect dynamics where reactive events dominate. Specialized MLIPs 
built via active learning can achieve higher accuracy but typically rely on 
molecular dynamics (MD) and committee models to sample configuration 
space. Because rare reactions are unlikely to appear within accessible 
timescales, discovery is left to chance, often requiring long simulations or 
many iterations. As a result, such MLIPs may fit training data well but fail to 
capture the most chemically relevant regions. 

To address this limitation, we introduce DIAL (Domain-Informed Active 
Learning), a chemically targeted strategy that augments conventional active 
learning. Rather than relying solely on MD and uncertainty-driven sampling, 
DIAL incorporates both established reaction pathways and those identified 
via nudged elastic band (NEB) calculations. Training datasets are enriched 
with configurations along these pathways, particularly near transition 
states. By integrating data-driven active learning with domain knowledge of 
chemical processes, this approach ensures that the potential is trained on 
the chemically important regions of configuration space. 
 

Using DIAL, we developed a specialized MLIP for diamond surfaces and 
interface reactions. The potential enabled large-scale molecular dynamics 
simulations that reproduced graphitized and oxidized surface morphologies 
and reaction products, while providing new insights relevant to diamond-
based electronics and quantum technologies. In particular, the model 
captured thermal degradation mechanisms and suppression, facet-
dependent oxidative etching, and suggested strategies for controlling 
surface termination to preserve quantum-relevant color centers. Although 
demonstrated on diamond, the DIAL framework is general and applicable to 
other reactive materials systems, including catalysis and battery interfaces. 
 

These results demonstrate how DIAL bridges data-driven methods with 
domain expertise, highlighting the value of collaboration between materials 
scientists and AI specialists in advancing the next generation of materials 
discovery. 

AIML-ThP-3 AI Operating System for Accelerating Semiconductor R&D 
Process Development, Suresh Ayyalsamy, Manish Sharma, Elucida Labs 

Advanced plasma etch and deposition process development in 
semiconductor R&D requires the simultaneous optimization of dozens of 
interdependent parameters against stringent nanometer-scale metrics. 
Today, process engineers face a fragmented workflow characterized by 
siloed data, inefficient experimentation, manual analysis, and limited 
integration between process settings and physical outcomes. These 
bottlenecks slow discovery, drive up costs, and hinder knowledge transfer 
across teams. 

We present Elucida Labs, an AI-native operating system designed to 
transform semiconductor R&D environments across both etch and 
deposition. Our system enables process teams to reduce experimental 
burden, shorten learning curves, and converge to target specifications 
faster. By embedding AI-driven intelligence directly into R&D workflows, 
Elucida Labs demonstrates how AI can amplify human expertise, accelerate 
innovation, and reshape the economics of semiconductor process 
development. 

AIML-ThP-4 Physics-Informed Neural Networks for One-Dimensional 
Capacitively Coupled Plasma Physics Problems, Uvini Balasuriya 
Mudiyanselage, Jesse Jing, Arizona State University; Abhishek Verma, Kallol 
Bera, Shahid Rauf, Applied Materials Inc.; Kookjin Lee, Arizona State 
University 

Physics-Informed Neural Networks (PINNs) offer a flexible framework for 
solving coupled partial differential equations by embedding physical laws 
directly into thetraining process. In this work, we develop and evaluate a 
PINN approach for modeling one-dimensional capacitively coupled plasma 
(CCP) discharges, governed by electron continuity equation under the drift-
diffusion approximation and uniform ion density assumption, coupled with 
Poisson’s equation for self-consistent electrostatic plasma description. The 
governing equations are non-dimensionalized to improve numerical 
stability and facilitate learning across disparate physical scales. The model 
consists of two separate fully connected networks—one for electron 
density and one for electric potential—augmented with Fourier Feature 
Mapping to capture multi-scale spatial variations and trained with exact 
Dirichlet boundary conditions enforced for both electron density and 
potential. Collocation points are sampled throughout the spatio-temporal 
domain to compute physics-based residuals directly. Our PINN approach 
successfully approximates the finite difference method (FDM) solution, 
achieving an average L² relative error of 3.55% for electron density and 
3.89% for electric potential over spatio-temporal domain. To address 
training stiffness and gradient flow issues commonly observed in multi-
equation PINNs, we are currently exploring adaptive loss balancing via 
gradient-based reweighting, as well as Neural Tangent Kernel (NTK)analysis. 
Preliminary results reveal a significant imbalance in the convergence rates 
of the two governing equations: the continuity equation loss decreases 
much faster than that of the Poisson’s equation, necessitating 
disproportionately higher loss weights for the Poisson term to achieve 
balanced convergence. The model is currently being extended to include 
ion continuity and momentum conservation equations. 
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