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Electronic Materials and Photonics 
Room 207 A W - Session EM2+AIML+AP+CPS+MS+SM-TuA 

Advances in AI and Machine Learning within the 
Semiconducting Industry 
Moderators: Alain Diebold, University at Albany-SUNY, Erica Douglas, 
Sandia National Laboratories 

4:00pm EM2+AIML+AP+CPS+MS+SM-TuA-8 Improved Design-of-
Experiments and Process Modeling with Generative AI, Somilkumar Rathi, 
Muthiah Annamalai, Panmo LLC 

Small volume semiconductor, photonic and materials manufacturing largely 
uses One-Factor at-a time (OFAT) to discover process window instead 
Design of Experiments (DOE). We demonstrate, Panmo Confab, a 
Generative AI based DOE and process-flow-design platform to accelerate 
process window discovery. Large volume semiconductor, photonic and 
materials automation tools have relied on statistical process control (SPC), 
design of experiments (DOE) and yield modeling techniques which are fairly 
manual and depend on specialized tools and deep knowledge [1,2]when 
such tools are not used we get a sub-optimal outcomes for process 
development teams through using one-factor at a time (OFAT). In this 
article we report, and demonstrate, Panmo Confab a Generative AI based 
process flow tracking and design of experiments platform to accelerate flow 
designs and generating DOEs. Previously our tool was used without 
Generative AI, features to show improvement in process discovery for 
plasmonic nanocavity fabrication [4]. The unique innovation of our tool is to 
use the emerging technology of large language models (LLM), like BERT or 
ChatGPT [5,6] and science of causality [3] to enable generation of process 
flows with a description. Our tool is presented in both on-premises and 
Software-as-a-Service (SaaS) formats. 
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4:15pm EM2+AIML+AP+CPS+MS+SM-TuA-9 Foundation Models in 
Semiconductor R&D: A Study on Segment Anything, Fei Zhou, Sandisk 
Corporation 

Quantitative analysis of scanning and tunneling electron images is crucial in 
semiconductor manufacturing, particularly for defect detection, process 
margin checking, and morphology quantification. Traditional AI/ML 
approaches, such as using recurrent neural networks, require large labeled 
datasets and extensive transfer learning to generalize across different 
imaging conditions. Developing a usable AI tool for proof-of-concept 
demonstrations demands significant engineering effort and GPU resources, 
making these methods costly and time-consuming. These challenges are 
especially pronounced in semiconductor R&D, where fast turnaround, high 
accuracy, and efficient use of engineering resources are essential. 

The Segment Anything Model (SAM) introduces a novel training free 
segmentation approach, eliminating the need for task-specific retraining 
while providing robust and efficient segmentation across diverse 
semiconductor imaging requirements. This paper explores SAM’s 
application in semiconductor image analysis, demonstrating its ability to 
segment complex nanoscale features without prior dataset exposure. We 
assess SAM’s performance in automated defect detection, where 
challenges such as varying defect morphology, background noise, and 
process-induced variations exist. With appropriate prompting and post-
processing techniques, SAM adapts to different imaging conditions, offering 
a rapid, low-cost, and high-accuracy solution. 

Additionally, we examine SAM’s limitations, particularly in scenarios where 
the region of interest is small and contains limited useful pixel data. By 
employing image enhancement techniques, we demonstrate how SAM can 
effectively segment defects even in low-information conditions. 
Furthermore, we explore how integrating grounding techniques with SAM 

can expedite segmentation post-processing, further improving efficiency in 
real-world applications. 

Our case studies show that SAM significantly reduces resource overhead 
and enables semiconductor image analysis automation, achieving saving of 
>100 engineering hours and >20 GPU hours per project. Its foundation 
model architecture allows it to generalize across different defect types, 
backgrounds, and imaging techniques without additional data labeling or 
fine-tuning. These findings suggest that integrating SAM into 
semiconductor workflows enhances efficiency, lowers costs, and 
accelerates R&D decision-making by providing a scalable and cost-effective 
solution for high-precision image segmentation. This study highlights the 
transformative potential of foundation models in semiconductor 
engineering, paving the way for broader adoption of AI-driven automation 
across the industry. 

4:30pm EM2+AIML+AP+CPS+MS+SM-TuA-10 Collaborative AI - Driving 
Innovation and Sustainability in Semiconductor Industry, Julien Baderot, 
Ali Hallal, Hervé Ozdoba, Johann Foucher, Pollen Metrology, France 

In the rapidly evolving landscape of semiconductor technologies, the 
integration of artificial intelligence (AI) is fastening the way we approach 
material characterization, and process optimization. By leveraging 
computational power and collaborative AI technology, we can accelerate 
innovation, enhance efficiency, and promote sustainability across the 
industry.Collaborative AI facilitates the development ofmodels to automate 
analyses and the usage of IA between integrated circuitmanufacturers, 
equipment suppliers and internal software development.This approach 
addresses the growing challenges of process variability, rising complexity, 
and increasing quality demands, while also reducing environmental impact 
by boosting process yield. 

Every device development requires process iteration with significant 
economical, human and environmental costs. As the industry seeks more 
effective means of advancing technology, collaborative AI emerges as a 
critical driver of performance and sustainability. Each user can accelerate 
theirowninnovation roadmap with faster data analytics at all levels.Ouron-
premise platform guarantees full control over intellectual property while 
benefitingfrom a collective knowledge base from open-source data. Finally, 
by reducing the need for redundant tests and reaching specifications with 
fewer experiments, collaborative AI promotes a more environmental-
friendly approach to innovation. 

To answer the needs of the semiconductor industry, our collaborative 
platform embeds three key application modules. First, SmartMet3 defines 
precise recipes for material characterization and employs deep learning 
methods to replicate measurement strategies across multiple objects in 
images. It improves material characterization, enhances accuracy by 
reducing bias, and accelerates the transition from design to high-volume 
manufacturing. Then, SmartDef3 detects and measures defects using both 
supervised and unsupervised methods requiring low to no annotations. It 
incorporates clustering techniques to automatically identify new defect 
types, thereby improving defect detection and classification processes. 
Finally, SmartYield3 creates a digital twin of industrial processes, facilitating 
new experiments and defining optimal material targets. By reducing the 
number of physical experiments required to meet specifications, it 
enhances efficiency and accelerates the development cycle. 

Our collaborative IA platform creates a common language between data, 
tools, and experts, transforming complexity into long-term value. Fewer 
tests, less wasted processes and more shared intelligence contribute to 
greater industrial sobriety and faster innovations. 

4:45pm EM2+AIML+AP+CPS+MS+SM-TuA-11 MOFCreatioNN: A Novel 
Modular Machine Learning Approach for Designing 'Undesignable' Metal-
Organic Frameworks. , Satya Kokonda, 4779 Weatherhill Dr 

Many critical material discovery processes remain too complex for 
traditional computational modeling, necessitating costly and time-intensive 
experimentation. Here, we present a generalizable, application-driven 
methodology for material design, demonstrated through a case study in 
photocatalysis. Using a reinforcement learning ensemble, we generated 
120,000 novel metal-organic frameworks (MOFs) optimized for CO₂ heat of 
adsorption and CO₂/H₂O selectivity. A multi-objective fitness function—
incorporating stability, catalytic potential, cost, sustainability, and 
adsorption properties—enabled computational modeling of photocatalytic 
performance aligned with industrial criteria. To enhance efficiency and 
prevent feature overfitting, a predictor funnel system iteratively filtered 
low-scoring candidates, narrowing the search space to 17,315 MOFs and 
improving computational efficiency by 313%. Our system, MOFCreatioNN, 
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designed two high-performing, de novo MOFs: a Cr-based MOF with a 
photocatalyst score 239% higher than the control, and a Mn-based MOF 
that outperformed all baselines across every evaluated metric, 
demonstrating robustness against imperfect fitness functions. The 
proposed MOFs meet key synthesis and operational thresholds—including 
X-ray diffraction consistency with known structures, predicted 
synthesizability, temperature stability >300°F, and viable water stability—
making them practical for real-world applications. Furthermore, we identify 
actionable design heuristics, such as the significant impact of the N₂62 
metal cluster on photocatalytic performance. By integrating industrial 
considerations such as cost, stability, and environmental viability into the 
modeling process, this work showcases a scalable framework for the AI-
driven design of industrially relevant materials in domains previously 
considered computationally intractable. 
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Plasma Science and Technology 
Room 201 ABCD W - Session PS+AIML-ThA 

Plasma Modelling AI/ML 
Moderators: Ishikawa Kenji, Nagoya University, Japan, Angelique Raley, 
TEL Technology Center, America, LLC 

2:15pm PS+AIML-ThA-1 Machine Learning for Low Temperature Plasma 
Applications, Abhishek Verma, Kallol Bera, Shahid Rauf, Applied Materials, 
Inc. INVITED 

Low temperature plasmas are used for numerous depositions and etch 
applications in the semiconductor industry. The field is rapidly advancing 
driven by volumes of multimodal and complex spatiotemporal data from 
both experiments and simulations. Machine learning in combination with 
plasma modeling and simulation offers a wealth of techniques that could 
play key role in plasma source discovery, design and decision making. These 
techniques can also augment domain knowledge for plasma reactor control 
and process development. In this talk, we present our work on machine 
learning applications to modeling, control, and optimization of plasma 
chambers. To overcome the challenge of high computational cost 
associated with high fidelity plasma models for rapid and many-query 
analyses, we present a deep learning based non-linear surrogate modeling 
method. Our numerical experiments on capacitively coupled plasmas show 
that deep learning-based model can learn an efficient latent space 
representation of spatiotemporal features of plasma characteristics. 
Moreover, we extended this approach with physics informed neural 
networks to improve predictive accuracy and generalization while being 
data efficient. Physics informed approaches could also effectively 
incorporate expert knowledge while learning physics implicitly. 
Furthermore, we present application of regression methods for circuit 
estimation of collisional sheath in moderate pressure capacitively couple 
plasmas. The novel sheath model which includes collisional effects, ion 
current responses to sheath voltage and harmonics based resistive 
elements, builds on parametric flexibility using machine learning while 
maintaining interpretability. The talk outlines machine learning 
methodologies for modeling, optimizing, and controlling plasmas for 
semiconductor applications. 

2:45pm PS+AIML-ThA-3 Machine Learning Applications for Data 
Generation and Plasma Modelling, Sebastian Mohr, Kateryna Lemishko, 
Quantemol Ltd., UK; Jonathan Tennyson, University College London, UK 

Plasma simulations are widely used to study and optimize plasma 
processes, which require extensive chemical input data. Appropriate data is 
not always readily available, prompting us to develop machine learning 
approaches that predict missing species and reaction data; such as rate 
coefficients for neutral-neutral reactions [1] or ionization mass spectra for 
molecules [2]. These models typically combine several fundamental 
machine learning algorithms such as Kernel Ridge Regression, Random 
Forest, and XGBoost algorithms into a voting regressor, which increases 
their accuracy dramatically. While outliers exist due to inherent ML 
limitations, the generated data is generally within acceptable error margins; 
roughly speaking, about 90% of the estimated data agree within 20% with 
measured data. Hence, these machine learning techniques offer a fast and 
sufficiently accurate alternative to time-consuming calculations or 
inaccurate intuitive estimates. Here, we present our latest machine learning 
models including an estimator for sputtering yields of polyatomic targets by 
monoatomic ions. 

Another issue may be a long calculation time, especially for 
multidimensional simulations in complex reactive gas mixtures. Setting 
initial conditions based on a good estimate of the final result can shorten 
the required simulation time significantly, especially concerning 
convergence of neutral radicals, which develop on longer timescales 
compared to charged particles. Our ML methods are being developed by 
training on the results of a global plasma model, with the aim of predicting 
initial conditions that are close to the final result, to maximise efficiency of 
plasma simulations. We present here our first results for mixtures of argon, 
oxygen, and fluorocarbons as an example of mixtures commonly employed 
in semiconductor processing. 

[1] Martin Hanicinec et al. 2023 J. Phys. D: Appl. Phys.56 374001 

[2] Kateryna M Lemishko et al. 2025 J. Phys. D: Appl. Phys.58 105208 

3:00pm PS+AIML-ThA-4 Contour-Based Objectives for Robust Etch Model 
Selection, Chad M. Huard, Prem Panneerchelvam, Shuo Huang, Mark D. 
Smith, KLA 

As device scaling increasingly relies on 3D rather than CD scaling, etch has 
become a critical and challenging step, often limiting further scaling. The 
demand for high-quality, predictive etch models is growing, yet our 
understanding of surface mechanisms during dry etching remains limited. 
Techniques like XPS, SIMS, and AES provide clues to surface reactions, but 
the pathways are not immediately clear. First-principles computational 
methods such as DFT, quantum MD, and classical MD offer insights but are 
constrained by computational resources and turnaround times.We present 
a Monte Carlo profile model that bridges the gap between first-principles 
and empirical models by using simplified chemistry mechanisms calibrated 
with experimental data. Traditional models often rely on 'best-effort' 
mechanisms, risking calibration issues due to high dimensionality or model 
errors due to omission of critical pathways. We propose a unified method 
for evaluating etch mechanisms using rigorous contour-based objectives, 
which maximizes entitlement from metrology data and results in better 
model development/selection compared to gauge-based metrics. This 
approach identifies the simplest model that fits the data, addresses 
degeneracy in models and calibration objectives, and enhances model 
predictiveness. 

3:15pm PS+AIML-ThA-5 NAND Pillar Etch: Plasma and Feature Profile 
Modeling in Dry Etch Process, Harutyun Melikyan, Ebony Mays, NAND 
Pathfinding - Micron Technologies; Ali Bhuiyan, Sumeet Pandey, Advanced 
Modeling - Micron Technologies 

In this work we developed a model to study the Feature Profile Modeling 
(FPM) in the dry etch plasma process for NAND pillar etch. The model 
developed takes in process parameters, that is process knobs such as 
temperature, pressure, flowrates, Power, Frequency, Voltage as inputs. 
The output from the model is Feature profile information such as Etch 
rate, Etch Depth, Variation of CD with height, Twisting, Ellipticity, Necking 
(HM), Bowing (ONO) etc. This methodology makes possible the ability to 
correlate process knobs on an equipment directly to the feature profile. 
This can enable us to get a detailed sensitivity analysis of feature profile 
with respect to process knob on the equipment (like constructing a sort of 
digital twin for that equipment). In addition, the feature profile (for HAR) 
for the future nodes can be inferred from process knobs and recipe 
information even before running the experiments. 

3:30pm PS+AIML-ThA-6 Machine Learning of Simulated Nanosecond UV 
Laser Ablation Plumes, Jacob Paiste, University of Alabama at Birmingham; 
Sumner Harris, Oak Ridge National Laboratory; Shiva Gupta, University of 
Alabama at Birmingham; Eric Remington, Samford University; Robert 
Arslanbekov, CFDRC Research Corporation; Renato Camata, University of 
Alabama at Birmingham 

Laser-generated plasmas are a rich laboratory of complex spatiotemporal 
phenomena emerging from coupled thermodynamic, electromagnetic, and 
quantum mechanical processes. The strength of laser-solid and laser-
plasma interactions can vary over multiple orders of magnitude while 
gradients of density, temperature, and flow velocity give rise to shocks, 
instabilities, and turbulence in multiphase flows. Deep learning can be used 
to encode these complex spatiotemporal dynamics to discover correlations 
between the conditions under which a laser-generated plasma is 
produced—including the wide chemical and thermophysical diversity of 
ablation targets—and the resulting plasma flows. Predictive models can 
then be built to infer the fundamental properties of irradiated solids and 
plasmas, enabling a new experimental modality for measuring material 
properties like thermal conductivity or critical temperature. However, no 
databases of experimental or simulated laser-generated plasmas currently 
exist, so proof-of-concept for the efficacy of deep learning for this task is 
difficult to obtain. 

In this work, we carry out a deep learning study on synthetic laser-
generated plasma data. The synthetic data sets are produced using a 
combined laser ablation-fluid dynamics simulation based on the Hertz-
Knudsen model, including phase explosion when a target temperature 
exceeds the thermodynamic critical temperature. The model is 
implemented on an open-source Adaptive Cartesian Mesh framework that 
enables laser ablation plume simulations out to centimeter distances over 
tens of microseconds for any elemental material with well-defined 
thermophysical parameters. 

We generate a training dataset by simulating UV nanosecond pulsed laser 
ablation of elemental targets of Be, B, Na, Mg, Al, Sc, Ti, V, Fe, Co, Cu, Zn, 
Rb, Cs, Ta, W, and Pt with systematic variation of laser fluence (1–10 J/cm2) 
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and laser spot area (0.8–13 mm2). We use (2+1)D convolutional neural 
networks (CNNs) to encode spatiotemporal plume dynamics for regression 
and classification problems using our simulated data. Results indicate that 
given a plume image sequence and associated laser parameters, we can not 
only predict which element the plasma was generated from with high 
confidence but also predict the set of thermophysical properties of the 
material. These results serve as proof-of-principle for plasma plume 
dynamics as strong predictors of fundamental material properties and 
motivate new experimental measurement techniques using laser ablation. 
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