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AIML-ThP-1 AI Agents for Semiconductor Processing: A New Benchmark 
for Autonomous Materials Synthesis, Angel Yanguas-Gil, Argonne National 
Laboratory 

Over the past year there has been an increasing interest in leveraging 
foundation and large language models to design AI agents that can interact 
withexperiments to solve materials science and synthesis problems. One of 
the challenges of this approach is that testing the performance of these 
agents require access to automated labs. In contrast to benchmarks testing 
abilities such as knowledge, math skills, or reasoning, there is a lack of 
benchmarks that can help both design and evaluate agents without the 
access to dedicated experimental facilities. 

In this work, we introduce Semibench, a benchmark to evaluate AI agents' 
ability to operate and solve synthesis challenges in the context of 
semiconductor processing. This benchmark introduces two core ideas: first, 
it introduces virtual tools that simulate the output of real life experiments. 
This allows us to test an agent's ability to solve a wide range of challenges 
involving different tool configurations, amount and nature of information 
that is accessible, and process complexity. Second, it focuses on the 
concept of microtasks, challenges designed to have a unique solution. This 
allows us to define quantitative performance metrics for the agent based 
on how far the proposed solution is to the ground truth. For Semibench, we 
have focused on three different techniques that are commonly used in the 
context of microelectronics: atomic layer deposition, sputtering, and 
reactive ion etching. For each challenge in the benchmark, agents are 
exposed to a collection of virtual tools and asked to solve specific questions 
by providing a sequence of synthesis steps. These steps involve selecting 
the right configurations for each of the tools, such as the precursor 
channels in the case of ALD, or the targets and power for sputtering, or the 
etching recipe for RIE. 

We have applied this benchmark to agents based on leading large language 
models, such as OpenAI's o1 an o3 family of reasoning models. The results 
show that these agents can correctly identify the sequence of steps in a 
wide range of conditions. However, they struggle when they need to use 
quantitative data that is not provided explicitly to solve these challenges. 
These results provide useful information about how to design useful 
models and their limitations for thin film applications. 

AIML-ThP-2 Domain Knowledge + AI for Chemically Accurate Potentials: 
Application to Diamond Surfaces, John Isaac Enriquez, Princeton 
University Plasma Physics Lab; Yoshitada Morikawa, Osaka University, 
Japan; Igor Kaganovich, Princeton University Plasma Physics Lab 

Machine learning interatomic potentials (MLIPs) are powerful tools for 
accelerating atomistic simulations, but their reliability depends critically on 
training set construction. A common strategy is to build universal MLIPs 
from open-source databases, offering transferability but often sacrificing 
accuracy particularly in surfaces and interfaces with highly diverse chemical 
environments. These databases are dominated by equilibrium structures, 
leaving reaction pathways undersampled, forcing potentials to extrapolate 
in chemically critical regions—a limitation in catalysis, surface chemistry, 
and defect dynamics where reactive events dominate. Specialized MLIPs 
built via active learning can achieve higher accuracy but typically rely on 
molecular dynamics (MD) and committee models to sample configuration 
space. Because rare reactions are unlikely to appear within accessible 
timescales, discovery is left to chance, often requiring long simulations or 
many iterations. As a result, such MLIPs may fit training data well but fail to 
capture the most chemically relevant regions. 

To address this limitation, we introduce DIAL (Domain-Informed Active 
Learning), a chemically targeted strategy that augments conventional active 
learning. Rather than relying solely on MD and uncertainty-driven sampling, 
DIAL incorporates both established reaction pathways and those identified 
via nudged elastic band (NEB) calculations. Training datasets are enriched 
with configurations along these pathways, particularly near transition 
states. By integrating data-driven active learning with domain knowledge of 
chemical processes, this approach ensures that the potential is trained on 
the chemically important regions of configuration space. 
 

Using DIAL, we developed a specialized MLIP for diamond surfaces and 
interface reactions. The potential enabled large-scale molecular dynamics 
simulations that reproduced graphitized and oxidized surface morphologies 
and reaction products, while providing new insights relevant to diamond-
based electronics and quantum technologies. In particular, the model 
captured thermal degradation mechanisms and suppression, facet-
dependent oxidative etching, and suggested strategies for controlling 
surface termination to preserve quantum-relevant color centers. Although 
demonstrated on diamond, the DIAL framework is general and applicable to 
other reactive materials systems, including catalysis and battery interfaces. 
 

These results demonstrate how DIAL bridges data-driven methods with 
domain expertise, highlighting the value of collaboration between materials 
scientists and AI specialists in advancing the next generation of materials 
discovery. 

AIML-ThP-3 AI Operating System for Accelerating Semiconductor R&D 
Process Development, Suresh Ayyalsamy, Manish Sharma, Elucida Labs 

Advanced plasma etch and deposition process development in 
semiconductor R&D requires the simultaneous optimization of dozens of 
interdependent parameters against stringent nanometer-scale metrics. 
Today, process engineers face a fragmented workflow characterized by 
siloed data, inefficient experimentation, manual analysis, and limited 
integration between process settings and physical outcomes. These 
bottlenecks slow discovery, drive up costs, and hinder knowledge transfer 
across teams. 

We present Elucida Labs, an AI-native operating system designed to 
transform semiconductor R&D environments across both etch and 
deposition. Our system enables process teams to reduce experimental 
burden, shorten learning curves, and converge to target specifications 
faster. By embedding AI-driven intelligence directly into R&D workflows, 
Elucida Labs demonstrates how AI can amplify human expertise, accelerate 
innovation, and reshape the economics of semiconductor process 
development. 

AIML-ThP-4 Physics-Informed Neural Networks for One-Dimensional 
Capacitively Coupled Plasma Physics Problems, Uvini Balasuriya 
Mudiyanselage, Jesse Jing, Arizona State University; Abhishek Verma, Kallol 
Bera, Shahid Rauf, Applied Materials Inc.; Kookjin Lee, Arizona State 
University 

Physics-Informed Neural Networks (PINNs) offer a flexible framework for 
solving coupled partial differential equations by embedding physical laws 
directly into thetraining process. In this work, we develop and evaluate a 
PINN approach for modeling one-dimensional capacitively coupled plasma 
(CCP) discharges, governed by electron continuity equation under the drift-
diffusion approximation and uniform ion density assumption, coupled with 
Poisson’s equation for self-consistent electrostatic plasma description. The 
governing equations are non-dimensionalized to improve numerical 
stability and facilitate learning across disparate physical scales. The model 
consists of two separate fully connected networks—one for electron 
density and one for electric potential—augmented with Fourier Feature 
Mapping to capture multi-scale spatial variations and trained with exact 
Dirichlet boundary conditions enforced for both electron density and 
potential. Collocation points are sampled throughout the spatio-temporal 
domain to compute physics-based residuals directly. Our PINN approach 
successfully approximates the finite difference method (FDM) solution, 
achieving an average L² relative error of 3.55% for electron density and 
3.89% for electric potential over spatio-temporal domain. To address 
training stiffness and gradient flow issues commonly observed in multi-
equation PINNs, we are currently exploring adaptive loss balancing via 
gradient-based reweighting, as well as Neural Tangent Kernel (NTK)analysis. 
Preliminary results reveal a significant imbalance in the convergence rates 
of the two governing equations: the continuity equation loss decreases 
much faster than that of the Poisson’s equation, necessitating 
disproportionately higher loss weights for the Poisson term to achieve 
balanced convergence. The model is currently being extended to include 
ion continuity and momentum conservation equations. 
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