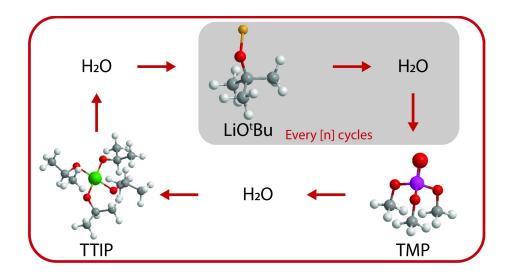
Tuning the composition and structure of high mobility NASICON-like thin films through atomic layer deposition

Daniela R. Fontecha^{*,1}, Alex C. Kozen², David M. Stewart¹, Gary W. Rubloff¹, and Keith E. Gregorczyk¹

¹Department of Materials Science & Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742

²Department of Physics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, 05405


* Corresponding author: drfontec@umd.edu

Fast Li⁺ ion conducting thin film solid state electrolytes (SSEs) by atomic layer deposition (ALD) enable high power density, fast time constants, and high operating frequency regimes in solid state ionic devices. However, the ionic conductivity of thin film SSEs fabricated by ALD has been limited by material development challenges, phase purity concerns when dealing with tertiary and quaternary systems, and challenges related to crystallinity. These complexities require careful consideration of the material system, precursor selection, process parameters, and post-annealing conditions to realize ideal ALD thinfilm SSE materials with ionic conductivities >10⁻⁶ S/cm.¹ Bulk oxide SSEs, such as Li_{1+x}Al_xTi_{2-x}(PO₄)₃ (LATP) have a NASICON-like crystal structure, show high ionic conductivity when crystalline (10⁻³ S/cm), demonstrate air & water stability, and a high voltage stability window.² ALD synthesis of LATP can be broken down into well-known constituent processes (e.g., Li₃PO₄, Al₂O₃, TiP₂O₇) which can be combined with respect to stoichiometric ratios.

LATP can be considered Al-doped LiTi₂(PO₄)₃ (LTP), in which Al⁺³ ions partially replace Ti⁺⁴ ions in the NASICON-type structure. This facilitates fast Li⁺ ion conduction through the 3D network.² With that in mind, an ALD process for LTP was first developed by alternating between Li₂O and TiP₂O₇ sub-processes. The Li₂O sub-process uses lithium *tert*-butoxide (LiO^tBu) as the lithium source and water to complete the surface reaction. The TiP₂O₇ sub-process uses titanium (IV) isopropoxide (TTIP) as the titanium source, trimethyl phosphate (TMP) as the phosphorous source, and water. The growth rate of LTP was measured to be 0.4 Å/cycle at 300 °C. By adjusting the ratio between Li₂O and TiP₂O₇ cycles, the Li concentration in LTP can be tuned between 8.4-34.3 at % Li.

A NASICON-type crystalline structure is achieved by post-annealing the LTP films between 650 °C – 850 °C. The ideal annealing temperature was found to be a function of Li-ion concentration. The resulting measured ionic conductivity of partially crystalline LTP thin films is 3.6×10^{-5} S/cm at 80 °C. In this talk, we will discuss the complex issues related to process parameters, stochiometric tunability, and the resulting ionic conductivity when exploring ternary and quaternary LTP/LATP metal phosphates phase space.

- 1. Meng, X. Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: opportunities and challenges. *Energy Storage Mater.* **30**, 296–328 (2020).
- 2. Xiao, W., Wang, J., Fan, L., Zhang, J. & Li, X. Recent advances in Li1+xAlxTi2-x(PO4)3 solid-state electrolyte for safe lithium batteries. *Energy Storage Mater.* **19**, 379–400

Figure 1. Schematic of supercycling ALD approach for LiTi₂(PO₄)₃ utilizing ALD precursors for each sub-process. **(gray) Li₂O sub-process:** lithium tert-butoxide (LiOtBu) as the Li-source, and water. **(white) TiP₂O₇ sub-process:** trimethyl phosphate (TMP) as the phosphorous source, titanium (IV) isopropoxide (TTIP) as the titanium source, and water.