Monday Afternoon, November 4, 2024

Quantum Science and Technology Mini-Symposium Room 123 - Session QS1+EM+MN+PS-MoA

Materials + Devices for Quantum Systems

Moderators: Parag Banerjee, University of Central Florida, Jaesung Lee, University of Central Florida

1:30pm QS1+EM+MN+PS-MoA-1 Elastic Layered Quantum Materials, *Jiun-Haw Chu*, University of Washington INVITED

Recently elastic strain has emerged as a powerful tool for probing and controlling quantum materials. By changing chemical bond lengths, elastic strain can modulate electronic structure up to very high energy scale. Additionally, as a second rank tensor, strain enables access to various instabilities associated with different symmetry channels. In this talk, I will discuss several examples of the application of strain to unconventional electronic orderings in van der Waals layered materials, including zigzag antiferromagnetism, charge density waves and excitonic insulators.

2:00pm QS1+EM+MN+PS-MoA-3 Controllable Extended Defect States in Topological Insulators and Weyl Semimetals, *Eklavya Thareja*, *J. Gayles*, University of South Florida; *I. Vekhter*, Louisiana State University

Over the past decade study of topological materials has emerged as one of the most active areas in condensed matter physics, owing to a wide range of their proposed applications ranging from quantum computing to spintronics. What sets them apart from the materials currently used to build information technology is their robustness to disorder. However, in addition to the immunity of their electronic states against disorder, one needs ways to control the properties of these electronic states in these materials. We show that extended defects such as line defects and planar defects host localized states in Topological Insulators and Weyl Semimetals, which are two common topological materials. These localized states can be manipulated by controlling the scattering at the defects, for example, by using an external magnetic field. This leads to controllable spin accumulation and non-dissipative currents near the defects, due spin-momentum locking. These results bring us closer to functional applications.

2:15pm QS1+EM+MN+PS-MoA-4 Topological Interfacial State in One-Dimensional h-BN Phononic Waveguide, Y. Wang, Sanchaya Pandit, University of Nebraska - Lincoln

Artificial topological structures have gained considerable research attention in the fields of photonics, electronics, mechanics, acoustics, and many others, as they promise robust propagation without loss along the edges and interfaces. In this work, we explored the topological states in onedimensional (1D) phononic waveguides empowered by hexagonal boron nitride (h-BN), a hallmark two-dimensional (2D) material with robust mechanical properties that can support phonon propagation in high frequency regime. First, degenerate trivial and nontrivial topological structures were designed based on the Su-Schrieffer-Heeger (SSH) model. The dispersion engineering was then performed to match the passbands and bandgaps for these two topological structures through optimizing the geometric parameters of the unit cells. An interfacial state emerged when connecting these two sets of unit cells together and forming the 1D waveguide. The topological nature of this interfacial state, immune to structural and material parameter perturbation, was verified with the variation of strain and thickness in the waveguide. The phononic topological state studied here can be further coupled with defect-related quantum emitters in h-BN, opening the door for next-generation hybrid optomechanical circuits.

2:30pm QS1+EM+MN+PS-MoA-5 Scanning Nano-Optical Imaging of Quantum Materials, *Guangxin Ni*, Florida State University

Scanning near-field Nano-Optical imaging is an invaluable resource for exploring new physics of novel quantum materials. Surface plasmon polaritons and other forms of hybrid light-matter polaritons provide new opportunities for advancing this line of inquiry. In particular, nano-polaritonic images obtained with modern scanning nano-infrared tools grant us access into regions of the dispersion relations of various excitations beyond what is attainable with conventional optics. I will discuss this emerging direction of research with two examples from 2D layered quantum

2:45pm QS1+EM+MN+PS-MoA-6 Engineering of Erbium-Implanted Lithium Niobate Films for Integrated Quantum Applications, Souryaya Dutta, College of Nanotechnology, Science, and Engineering (CNSE), University at Albany; A. Kaloyeros, S. Gallis, College of Nanotechnology, Science, and Engineering (CNSE), University at Albany (UAlbany)

Rare-earth-doped materials have garnered significant attention as material platforms in emerging quantum information and integrated photonic technologies. Concurrently, advances in its nanofabrication processes have unleashed thin film lithium niobate (LN), LiNbO₃, as a leading force of research in these technologies, encompassing many outstanding properties in a single material. Leveraging the scalability of ion implantation to integrate rare-earth erbium (Er³+), which emits at 1532 nm, into thin film lithium niobate can enable a plethora of exciting photonic and quantum technologies operating in the telecom C-band. Many of these technologies also rely on coupling via polarization-sensitive photonic structures such as waveguides and optical nanocavities, necessitating fundamental material studies.

Toward this goal, we have conducted an extensive study on the role of implantation and post-implantation processing in minimizing implantationinduced defectivity in x-cut thin film LN. By leveraging this, we have demonstrated an ensemble optical linewidth of ~140 GHz of the Er emission at 77 K. Our demonstration showcases the effectiveness of our ion implantation engineering in producing cutting-edge Er emission linewidth in thin film LN at higher temperatures compared to values reported for diffusion-doped bulk materials at liquid helium temperatures (~3 K). Furthermore, we show that the Er photoluminescence (PL) is highly polarized perpendicular to the x-cut LN c-axis through a systematic and combinational PL and high-resolution transmission electron microscopy (HRTEM) study. These results indicate that using Er rare-earth emitters in thin film LN, along with their polarization characteristics and related ion implantation engineering, presents a promising opportunity to produce highly luminescent Er-doped LN integrated photonic devices for nanophotonic and quantum applications at telecom wavelengths.

Author Index

Bold page numbers indicate presenter

— **C** — Chu, J.: QS1+EM+MN+PS-MoA-1, **1** — **D** —

Dutta, S.: QS1+EM+MN+PS-MoA-6, 1

-G-

Gallis, S.: QS1+EM+MN+PS-MoA-6, 1 Gayles, J.: QS1+EM+MN+PS-MoA-3, 1 -- K --Kaloyeros, A.: QS1+EM+MN+PS-MoA-6, 1 -- N --

Ni, G.: QS1+EM+MN+PS-MoA-5, **1**— **P** —

Pandit, S.: QS1+EM+MN+PS-MoA-4, 1

-T-

Thareja, E.: QS1+EM+MN+PS-MoA-3, 1

-v-

Vekhter, I.: QS1+EM+MN+PS-MoA-3, 1

-w-

Wang, Y.: QS1+EM+MN+PS-MoA-4, 1