## Pt nanoclusters on GaN nanowires for solar-assisted seawater hydrogen evolution

<u>Victor S. Batista</u><sup>2</sup>, Wan Jae Dong <sup>1</sup>, Yixin Xiao <sup>1</sup>, Ke R. Yang <sup>2</sup>, Zhengwei Ye<sup>1</sup>, Peng Zhou <sup>1</sup>, Ishtiaque Ahmed Navid<sup>1</sup>, & Zetian Mi<sup>1</sup>

<sup>1</sup>Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109, USA. <sup>2</sup>Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, CT 06520, USA.

## E-mail: victor.batista@yale.edu

Seawater electrolysis provides a viable method to produce clean hydrogen fuel. To date, however, the realization of high-performance photocathodes for seawater hydrogen evolution reaction has remained challenging. Here, we introduce n<sup>+</sup>-p Si photocathodes with dramatically improved activity and stability for hydrogen evolution reaction in seawater, modified by Pt nanoclusters anchored on GaN nanowires (Fig 1). We find that Pt-Ga sites at the Pt/ GaN interface promote the dissociation of water molecules and spilling H\* over to neighboring Pt atoms for efficient H2 production. Pt/GaN/Si photocathodes achieve a current density of  $-10 \text{ mA/cm}^2$  at 0.15 and 0.39 V vs. RHE and high applied bias photon-to-current efficiency of 1.7% and 7.9% in seawater (pH = 8.2) and phosphate-buffered seawater (pH = 7.4), respectively. We further demonstrate a record-high photocurrent density of ~169 mA/cm<sup>2</sup> under concentrated solar light (9 suns). Moreover, Pt/GaN/Si can continuously produce H<sub>2</sub> even under dark conditions by simply



switching the electrical contact. This work provides valuable guidelines to design an efficient, stable, and energy- saving electrode for H<sub>2</sub> generation by seawater splitting.