
Thursday Morning, November 9, 2023 

Thursday Morning, November 9, 2023 1 8:00 AM 

Light Sources Science Mini-Symposium 
Room C124 - Session LS+AC+LX+MI+TH-ThM 

Tender X-ray Science and Time Resolved Studies 
Moderators: Alison Pugmire, LANL, David Shuh, Lawrence Berkeley 
National Laboratory, James G. Tobin, University of Wisconsin-Oshkosh 

8:00am LS+AC+LX+MI+TH-ThM-1 Developments of High Resolution X-Ray 
Spectroscopic Tools for Probing Structural Properties of Actinide System 
from the Metal and Ligand Perspective, Tonya Vitova, Karlsruhe Institute 
of Technology, Institute for Nuclear Waste Disposal, Germany INVITED 

 
High energy resolution X-ray absorption and emission spectroscopic 
techniques became indispensable methods in actinide and radionuclide 
research.1-5 One important motivation is studies concerning the 
mobilization and retention of long-lived actinides and fission products in 
geochemical processes relevant for safety studies of a potential deep 
geological nuclear waste repository.3-4 In-depth insights into the actinide-
ligand binding properties is a main application of these novel experimental 
techniques too.6 Development at the ACT experimental station of the CAT-
ACT wiggler beamline at the Karlsruhe Institute of Technology (KIT) Light 
Source will be discussed. One experimental technique especially powerful 
to differentiate oxidation states of actinides (An) is the An M4,5-edge high-
energy resolution X-ray absorption near-edge structure (HR-XANES).4 This 
presentation highlights the latest technological developments at the ACT 
station enabling the HR-XANES spectroscopic technique for samples with 
low radionuclide loading down to 1 ppm in combination with a cryogenic 
sample environment reducing beam-induced sample alterations.7-8 It paves 
the way for the examination of coupled redox/solid-liquid interface 
reactions.8 Examples of applications of An M4,5 edge core-to-core and 
valence band resonant inelastic X-ray scattering (CC-RIXS and VB-RIXS) for 
probing the electronic structure and binding properties of the actinide 
elements will be illustrated.6 First results obtained using a newly developed 
versatile chamber for soft X-ray spectroscopy at the X-SPEC beamline at the 
KIT Light Source will be discussed. 

This work has received funding from the European Union's Horizon 2020 
research and innovation program under grant agreement No. 847593. We 
also acknowledge funding from the ERC Consolidator Grant 2020 under the 
European Union’s Horizon 2020 research and innovation program (grant 
agreement No. 101003292).  
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8:40am LS+AC+LX+MI+TH-ThM-3 High-Energy-Resolution X-Ray 
Spectroscopy and Actinides Research at SLAC, Dimosthenis Sokaras, SLAC 
National Accelerator Laboratory INVITED 

Nowadays, high-energy-resolution x-ray spectroscopy is a well-established 
and powerful tool available in state-of-the art synchrotron facilities. The 
suppression of the core-hole lifetime contribution within the conventionally 
broad spectroscopic features of actinide series has revitalized the role of x-
ray spectroscopy in the study of actinide complexes and intermetallics. 
Numerous studies have leveraged the fine structure of M or L absorption 
edge resonances to sensitively probe and quantify the oxidation state, 5f 
delocalization, and ligation of the actinides species. The increasing 
availability of large solid angle instruments coupled with high flux 
beamlines is quickly enabling such advanced studies for dilute samples or 
samples under special sample environments. In this presentation we will 
summarize the high-resolution tender and hard x-ray spectroscopy 
advances at SLAC and the actinides research program that these capabilities 
have enabled during the last decade. 

9:20am LS+AC+LX+MI+TH-ThM-5 New Insight Into Excited-State Chemical 
Dynamics Using Ultrafast X-Rays:Recent Highlights, Future Opportunities 
& Development Plans at LCLS, Robert Schoenlein, Linac Coherent Light 
Source - SLAC National Accelerator Laboratory INVITED 

Ultrafast X-rays from free-electron lasers (XFELs) are driving a qualitative 
advance in our understanding of condensed-phase chemical dynamics and 
catalysis. Ultrafast soft X-rays provide element-specific mapping of chemical 
bonds, charge distributions, oxidation states and frontier orbitals. Ultrafast 
hard X-ray pulses reveal the atomic scale structural dynamics of excited-
state dynamics – revealing relaxation pathways, and the coupling of atomic 
structure, electronic structure, and solvent dynamics. This talk will highlight 
recent results from the Linac Coherent Light source (LCLS) using advanced 
ultrafast X-ray methods to track excited-state charge-transfer and relaxation 
pathways, and reveal the influence of molecular structural dynamics, and 
solvent coupling. Notably, multi-modal methods combining time-resolved 
X-ray scattering and spectroscopy represent a powerful approach for linking 
X-ray experimental observables with theory to achieve a deeper 
understanding of excited-state dynamics to advance the development of 
design principles for creating molecules, complexes, and assemblies with 
desired functions. 

In addition, new science opportunities enabled by the nearly-completed 
upgrade of LCLS (LCLS-II) coupled with advanced instrumentation and 
methods will be discussed. LCLS-II will provide tunable soft X-ray pulses 
(0.25 to 5.0 keV) at high repetition rate (up to 1 MHz) and hard X-rays up to 
25 keV (at 120 Hz). This unprecedented capability will support powerful 
new methods such as time-resolved resonant inelastic X-ray scattering 
(RIXS). The new ChemRIXS instrument is optimized for studying solvated 
complexes with C, N, O (K-edges), 3d transition metals (L-edges), and rare-
earth elements (M-edges) – where 2D RIXS maps of excited-state dynamics 
coupled with quantum chemical calculations will reveal the evolution of 
frontier orbitals. The Tender X-ray Instrument (TXI, 2.1-5.0 keV), now under 
development for LCLS-II, will support time-resolved tender X-ray 
spectroscopy (spanning the 4d transition metal L-edges and key functional 
ligands including P, S, and Cl), coherent scattering, and novel nonlinear X-
ray pump / X-ray probe methods - combining X-rays from two 
independently tunable XFEL sources. 

11:00am LS+AC+LX+MI+TH-ThM-10 Attosecond Studies of Radiolysis at 
XFELs, Linda Young, Argonne National Laboratory INVITED 

We report the first attosecond x-ray pump/x-ray probe transient absorption 
study in condensed phases using a pure liquid water target. With tunable 
two-color attosecond x-ray pulses, the pump ionizes the valence band of 
water and the probe scans the oxygen K-edge absorption region. Theory 
establishes the nature of the detected transient absorption and models the 
observed signal for sub-femtosecond delay times. 

Acknowledgements: This work supported in part by by the US Department 
of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, 
Geosciences, and Biosciences Division under award # DEAC02-06CH11357. 
Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator 
Laboratory, is supported by the U.S. Department of Energy, Office of 
Science, Office of Basic Energy Sciences under Contract No. DE-AC02-
76SF00515. 

critical importance for fields ranging from cancer therapy to the longevity of 
nuclear reactors to space travel. In these applications, radiolysis is initiated 
by a high-energy particle that leads to the ejection of energetic primary 
electrons followed by inelastic and non-adiabatic processes that produce 
damaging low energy electrons and reactive radical species. A microscopic 
understanding of reaction mechanisms, especially in complex systems, is 
missing as typical techniques used to detect prominent species, EPR and UV 
spectroscopies, lack either time resolution or spectral clarity. Tunable 
ultrafast x rays can dissect the radiolysis process. That is, x-ray pump/x-ray 
probe studies can systematically either peel electrons from valence, or, 
eject them from core orbitals and follow the ensuing dynamics on a site-
specific basis. 
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11:40am LS+AC+LX+MI+TH-ThM-12 First Real-Time Tracking of Oxidation 
States During Fast Redox of UO2 Using a Microfluidic Electrochemical Cell 
and HR-XANES, Jennifer Yao, Pacific Northwest National Laboratory; B. 
Schacherl, Karlsruhe Institute of Technology (KIT), Germany; B. McNamara, 
Pacific Northwest National Laboratory; C. Vollmer, Karlsruhe Institute of 
Technology (KIT), Germany; N. Lahiri, E. Ilton, E. Buck, Pacific Northwest 
National Laboratory; T. Vitova, Karlsruhe Institute of Technology (KIT), 
Germany 

Real-time tracking of the oxidation states of a UO2 electrode during 
electrochemical oxidation and reduction was achieved using operando 
high-resolution X-ray absorption near-edge structure (HR-XANES) 
spectroscopy at the ACT station of the CAT-ACT beamline at the KIT Light 
Source, Karlsruhe, Germany. This was made possible by utilizing a particle-
attached microfluidic electrochemical cell (PAMEC) developed at PNNL, and 
employing KIT’s advanced actinide M-edge HR-XANES technique.1-2 The 
PAMEC is a three-electrode system consisting of a working electrode (WE) 
made of the materials of interest a platinum (Pt) reference electrode, and a 
Pt counter electrode.3 The electrochemical analyzer connected to the 
PAMEC device controlled the redox process, e.g., applying constant 
potential on the UO2 WE to reduce (-1.1 V vs Pt) or oxidize it (0.5 V vs Pt), 
while HR-XANES simultaneously scanned its surface chemistry. The U M4-
edge HR-XANES spectra revealed the evolution of U from U(IV) to U(V) and 
finally to U(VI) during the oxidation process. We were able to demonstrate 
the reversibility of this process by reducing the same electrode back to pure 
U(IV), as confirmed by HR-XANES. To our knowledge, this study reports the 
first in-situ and operando measurement of real-time oxidation state 
changes of UO2. The spectra obtained also provided insight into the 
electronic structure of U(VI) in the UO2 alteration process. This successful 
international scientific collaboration showcases the potential of a PAMEC 
for in-situ and operando experiments with UO2 and highlights its promising 
broad application for characterization of spent nuclear fuel systems. 
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12:00pm LS+AC+LX+MI+TH-ThM-13 Use of Artificial Intelligence 
Techniques To Analyze Materials Characterization Data From Actinide 
Containing Materials, Jeff Terry, Illinois Institute of Technology 

We have developed artificial intelligence (AI) based methodology that can 
be utilized to reliably analyze experimental results from Extended X-ray 
Absorption Fine Structure (EXAFS), Nanoindentation, and core level 
photoemission. Specifically, we use a genetic algorithm to extract the 
relevant structural parameters through fitting of the measured spectra. The 
current approach relies on a human analyst to suggest a potential set of 
chemical compounds in the form of feff.inp input files that may be present. 
The algorithm then attempts to determine the best structural paths from 
these compounds that are present in the experimental measurement. The 
automated analysis looks for the primary EXAFS path contributors from the 
potential compounds. It calculates a goodness of fit value that can be used 
to identify the chemical moieties present. The analysis package is called 
EXAFS Neo and is open source written in Python. I will illustrate the use of 
this package with fits of actinide species in the barrier layer of Tristructural-
isotropic (TRISO) encapsulated nuclear fuel particles. The current particle 
design consists of a two-phase uranium-oxide/uranium-carbide kernel of 
19.74% 235U enrichment, a porous carbon buffer layer, and consecutive 
layers of pyrolytic carbon, silicon carbide (SiC) and pyrolytic carbon. The SiC 
layer provides the main barrier to fission product release. Much work has 
gone towards studying metallic fission product interaction in the SiC 
containment layer due to the propensity of metallic fission product release 
as a function of high temperature (safety) testing. Here, I will show how the 
interaction dynamics of plutonium and uranium within this layer have been 
determined through EXAFS measurements that have been fit with AI. One 
of the major benefits of using this technology is that actinide containing 

materials often have edges from higher Z-elements that limit the usable 
range of the spectrum. Our method fits momentum space data which does 
not suffer from transformation artifacts of real space over a small 
momentum range. 
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