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2:20pm AP1+2D+EM+PS+TF-TuA-1 Combination of Plasma-Based Atomic-
Scale Deposition and Etching Processes for Advanced Patterning, 
Marceline Bonvalot, LTM - MINATEC - CEA/LETI, France; C. Vallée, SUNY 
College of Nanoscale Science and Engineering; r. gassilloud, T. Chevolleau, 
CEA/LETI-University Grenoble Alpes, France; N. Possémé, 
STmicroelectronics, France INVITED 

Selective Deposition processes have gained increased research interest in 
recent years, because they enable the accurate placement of a thin film on 
a specific substrate surface (in the case of area selective deposition ASD) or 
on specifically oriented surfaces (in the case of topographical selective 
deposition TSD). Such processes require atomic-scale precision, and usually 
involve Atomic Layer Deposition techniques, with possibly plasma 
assistance. Several pathways have been proposed in the literature for ASD, 
most commonly implying surface inhibition treatments with dedicated 
chemical treatments (self-assembled molecules or small molecule 
inhibitors for instance) to increase the nucleation delay during the 
subsequent ALD growth. However, the dedicated inhibition behavior 
eventually deteriorates when exposed to a few ALD cycles, which requires 
that on the one hand, nuclei formed on non-growth surfaces be removed 
and on the other hand, the inhibitor be systematically regenerated. 

In this presentation, we will show how the insertion of an in situ etching 
step in the overall ALD process can serve as an effective corrective 
treatment for this purpose. The etching periodicity in conventional 
deposition/etching duty cycles will be investigated in details. We will show 
that the etching step should preferentially be carried out before the 
transition from the Volmer-Weber 1D island growth mode to the 2D layer 
by layer growth mode on non-growth surfaces, to limit plasma-induced 
surface defects. Moreover, the 1D island growth mode seems to coincide 
with the onset of degradation for the surface inhibition treatment. In this 
context, it will be shown that the etching periodicity is a determining 
parameter for the successful development of a selective bottom-up growth 
strategy. 

3:00pm AP1+2D+EM+PS+TF-TuA-3 Application of Etching Reaction Models 
to Deposition Processes, Nobuyuki Kuboi, Sony Semiconductor Solutions 
Corporation, Japan INVITED 

Advanced CMOS devices require highly intricate 3D stacked structures with 
varying aspect ratios such as FinFETs and GAAs [1]. Understanding the 
process properties of plasma etching [2] and deposition [3] processes based 
on their mechanism and combinations has become increasingly important 
in addressing this challenge. Additionally, microfabrication properties 
should be stably suppressed within a specific range during mass 
production. However, the monitoring system equipped in the process 
chamber is limited for mass production. Therefore, we propose predictive 
models for plasma etching and deposition that consider the physical and 
chemical aspects of the plasma and surface. 

First, we briefly introduce simulations for fluctuations in the SiN etching 
rate influenced by the chamber wall condition, critical dimensions during Si 
gate etching caused by SiBrx by-products dependent on open area ratios on 
wafer/chip/local-pattern levels, damage distribution affected by local-
pattern structure, ion energy, and hydrogen concentration in the SiO2 and 
SiN films, and selectivity during SiO2-ALE [4][5][6]. 

We then present a modeling and simulation of the deposition process as a 
motif of the SiN-PECVD process using a 3D voxel method that can be 
associated with the previous process, such as plasma etching [7]. The 
model can predict film properties as well as the coverage on a large-scale 
pattern. Reactions among voxels are considered pseudo treatments for 
atomistic interactions on the surface. A statistical ensemble method 
involving probabilities is used to express physical and chemical phenomena 
such as sticking, migration, and bond formation on the deposited surface. 
The sticking and bond probabilities are affected by surface damage and 
IEADFs, respectively. Our model can successfully reproduce the 
experimental characteristic relationship between the morphology and film 
density dependent on the SiH4 flow rate during the low temperature (120 
ºC) SiN-PECVD process considering different gas residence times that affect 

surface reactions. Furthermore, we discuss the issue of modeling the ALD 
process. 

These simulation technologies can aid in optimizing the chamber wall 
condition, pattern design, and etching/deposition combination process. 
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4:20pm AP1+2D+EM+PS+TF-TuA-7 Recent Advancements for Atomic Layer 
Advanced Manufacturing Processes: Microreactor Direct Atomic Layer 
Processing (μDALP™), Maksym Plakhotnyuk, A. Varga, I. Kundrata, ATLANT 
3D Nanosystems, Denmark; J. Bachmann, ATLANT 3D Nanosystems; 
Friedrich-Alexander Universität Erlangen-Nürnberg, Denmark INVITED 

As the demand for miniaturized and complex devices continues to grow 
across various industries, the need for innovative and precise atomic layer 
advanced manufacturing (ALAM) technologies becomes increasingly 
apparent[1]. Our company, utilizing proprietary Microreactor Direct Atomic 
Layer Processing (μDALP™), is at the forefront of pushing sALD's capabilities 
and broadening its application horizons. The µDALPTM process undergoes 
the same cyclic ALD process but only in a spatially localized area.[2] The 
microreactor or micronozzle confines the flows of gases used for ALD within 
a defined µm-scale centric area on the substrate to deposit the desired 
material.[3] 

ATLANT 3D’s recent advancements in our novel μDALP™ technology have 
enabled innovation within the thin film deposition field ranging from ALD 
material development to rapid prototyping and manufacturing. The 
μDALP™ process enables multiple depositions e.g., depositions with varying 
film thicknesses, to be deposited onto a single wafer used to calculate a 
given processes growth rate within only a few hours, compared to days for 
a traditional ALD process. In Addition, innovation of applications including 
optics and photonics, quantum devices, MEMS, RF electronics, emerging 
memory technologies, advanced packaging, and energy storage are 
possible and have been demonstrated using μDALP™ technology. 

Discussing the improvements to the μDALP™ process, we have decreased 
the process resolution, increased material compatibility, and accessible 
morphologies. Giving one example of the recent development in 
morphologies, films deposited with μDALP™ have conformal coverage of 
gratings, microchannels, and trenches up to a depth of 25 μm using a 
Platinum deposition process. Fig. 1 demonstrates how a given ALD material 
process (in this case, Pt) can be used with ATLANT 3D technology to deposit 
localized area conformal coatings of complex surfaces with an aspect ratio 
of 1:25. Hence demonstrating the versatility and potential of our 
technology for achieving inherently selective ALD for processing on 
complex surface morphologies. 

This talk aims to shed light on how our breakthroughs in spatial ALD and 
μDALP™ technology contribute to the advancement of ALAM and scale-up. 
Fostering a deeper understanding of our technology's capabilities and 
exploring the possibilities it opens up for various industries. 
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