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8:00am AP+EM+PS+TF-TuM-1 Area-Selective Deposition in Nanoscale 
Patterns, Annelies Delabie, Imec Belgium, and KU Leuven Belgium; J. Clerix, 
IMEC Belgium; K. Van Dongen, IMEC, Belgium; J. Sinha, IMEC Belgium; L. 
Nyns, IMEC, Belgium; R. Nye, LAM Research; G. Parsons, North Carolina 
State University; J. Swerts, IMEC Belgium INVITED 

Manufacturing nano-electronic devices becomes more and more complex 
as the device dimensions reach the nanoscale and a wide range of new 
materials is being implemented to achieve high device performance. 
Additional complexity comes from the use of three dimensional (3D) 
structures to reduce the active footprint. Area-Selective Deposition (ASD) 
provides a promising avenue to assist and/or even simplify device 
manufacturing processes. ASD is a technique to deposit material only on a 
pre-defined area of a patterned surface (the growth area), while no 
deposition is intended on other areas of the same surface (the non-growth 
area). As such, ASD can be used to replicate patterns on 3D substrates and 
to (partly) fill narrow trenches or holes from the bottom up. ASD can be 
achieved by tuning the adsorption and diffusion kinetics in atomic layer 
deposition (ALD) and chemical vapor deposition (CVD) processes. Insight in 
the chemical and physical processes is essential to enable rational design of 
new ASD processes for nano-electronic device manufacturing for advanced 
technology nodes. 

This presentation will discuss the growth mechanisms during ASD on 
substrates that contain nanoscale patterns, where the geometry of the 
nanopatterns can affect the growth behavior, selectivity and uniformity. An 
aminosilane small molecule inhibitor can enable ASD on a wide range of 
materials with SiO2 as the non-growth surface [1]. The selectivity of TiO2 
ALD relies mainly on adsorption. Selectivity loss during TiO2ALD occurs via a 
nucleation site generation mechanism: small TiO2 nanoparticles are 
continuously generated during ALD by slow, unintentional adsorption on 
the passivated non-growth surface area [2]. ASD super cycles consisting of 
inhibitor adsorption, TiO2 ALD and etch effectively improve the selectivity, 
but may compromise the height uniformity in nanoscale patterns. The 
selectivity of Ru and Ge2Sb2Te5 ALD relies on a complex interplay of 
adsorption, diffusion and aggregation. We reveal a pattern-dependent 
selectivity for Ru ALD, which is explained by aggregation of Ru adspecies at 
the pattern edges [3]. We conclude that the selectivity and uniformity of 
ALD processes can change when pattern dimensions reach the nanoscale. 

[1] K. Van Dongen et al, J. Vac. Sci. Technol. A 2023, 41, 032404. 

[2] R. A. Nye et al, Appl. Phys. Lett. 2022, 121, 082102. 

[3] J.-W. J. Clerix et al, Appl. Surf. Sci. 2023,626, 157222. 

8:40am AP+EM+PS+TF-TuM-3 N-Heterocyclic Carbenes as Small Molecule 
Inhibitors in AS-ALD, Cathleen Crudden, Queen's University, Canada
 INVITED 

A unique carbon-based SMI, called an N-heterocyclic carbene (NHC), has 
been developed as a small molecule inhibitor using carbon as the 
heteroatom. NHCs have been used in organometallic and catalysis 
chemistry for decades, where they are renowned for their ability to form 
strong bonds to metal surfaces. We have developed a suite of organic SMIs 
with high volatility and thermal stability enabling deposition in an ALD tool. 
We demonstrated strong binding of the SMI to Ru, Co, Mo and Cu and 
selectivity for binding to metal surfaces in the presence of insulators. These 
results are informed by surface science studies including microscopy and 
spectroscopy. 

9:20am AP+EM+PS+TF-TuM-5 Unraveling Precursor Blocking Mechanisms 
in Area-Selective Atomic Layer Deposition Using Small Molecule 
Inhibitors, Olaf Bolkenbaas, M. Merkx, Eindhoven University of Technology, 
Netherlands; P. Yu, eindhoven University of Technology, Netherlands; T. 
Sandoval, Universidad Tecnica Federico Santa Maria, Chile; E. Kessels, A. 
Mackus, Eindhoven University of Technology, Netherlands 

Area-selective atomic layer deposition (ALD) has garnered significant 
attention as a potential technique for enabling the further miniaturization 
of semiconductor devices. One method for achieving area-selective ALD is 
through the use of small molecule inhibitors (SMIs) that selectively block 
deposition on certain materials. Previous research has indicated that 

precursor blocking by SMIs involves two components: the chemical removal 
of reactive surface sites and the physical blocking of the surface, also 
referred to as chemical passivation and steric shielding respectively [1]. 
However, it is difficult to differentiate between these two factors as they 
occur simultaneously. In this work we attempt to unravel the steric 
shielding and the chemical passivation contributions by the SMI 
acetylacetone (Hacac) with the use of reflection adsorption infra-red 
spectroscopy (RAIRS) on dehydroxylated Al2O3 surfaces obtained through 
annealing. 

When comparing Hacac adsorption on an as-prepared and an annealed 
Al2O3 surface using RAIRS, a lower amount of Hacac adsorbates was 
observed on the annealed surface. Furthermore, a higher fraction of the 
Hacac adsorbates was present in the more strongly bonded chelate 
configuration. This difference in the distribution of the binding 
configurations demonstrates that the density of surface sites affects the 
SMI adsorption behavior. We expect that this different adsorption behavior 
is caused by a lower amount of steric hindrance between the SMIs on the 
annealed Al2O3 surface. Furthermore, the increase in the amount of 
adsorbates in the chelate configuration will result in a higher contribution 
of chemical passivation on the dehydroxylated surface, since only the 
adsorbates in the chelate configuration chemically passivate the surface [2]. 
From this we can conclude that the removal of surface sites can be used to 
obtain a better understanding of the two precursor blocking mechanisms. 
This better understanding will create opportunities for the development of 
new area-selective ALD strategies involving the removal of reactive surface 
sites before the functionalization with SMIs to improve selectivity. 

[1] Merkx, et al., Chem. Mater. 32, 3335–3345 (2020). 

[2] Mameli et al., ACS Nano 11, 9303–9311 (2017). 

9:40am AP+EM+PS+TF-TuM-6 Topographically-Selective Deposition Using 
Amorphous Carbon as Inhibition Layer, Thijs Janssen, M. Merkx, W. 
Kessels, A. Mackus, Eindhoven University of Technology, The Netherlands 

To accommodate the increasing complexity of device architectures in 
nanoelectronics, new nanoscale processing techniques are required. 
Selective deposition techniques have been developed in recent years to 
enable bottom-up and self-aligned processing12. While traditional area-
selective deposition distinguishes between areas depending on their 
chemical character, topographically-selective deposition (TSD) distinguishes 
between areas based on their orientation within a 3D structure2,3. Such TSD 
approaches offer new fabrication opportunities, for example when the 
growth and non-growth areas possess similar material properties, or when 
too many different materials are present within the device structure. 
Previously reported TSD methods have been demonstrated only for specific 
materials. 

In our work, we develop a versatile TSD strategy that is potentially suitable 
for a broad range of materials. Our approach utilizes a pulsed Ar/CH4 
plasma to selectively apply an amorphous carbon (aC) inhibition layer on 
horizontally-oriented surfaces by relying on the directional ions from the 
plasma. The vapor-phase selective deposition of aC is integrated together 
with existing ALD processes and plasma treatments into a TSD supercycle 
recipe. 

The highly inert surface of aC lacks suitable absorption sites for ALD 
precursors and co-reactants, making it an effective inhibition layer. It was 
found that only the horizontally-oriented surfaces are covered by the aC 
layer, thus subsequent ALD of target materials proceeds exclusively on 
vertically-oriented surfaces. 

Successful ALD inhibition on the aC surface is established for several 
different target materials such as TiO2 using TDMAT and H2O, Nb2O5 using 
TBTDEN and H2O, and NiOx using Ni(BuAMD)2 and H2O. In particular 90% 
selectivity was maintained for 35 cycles TiO2 deposition (1.09 ± 0.01 nm 
selective growth), 70 cycles Nb2O5 deposition (4.38 ± 0.02 nm) and 40 
cycles of NiOx deposition (1.28 ± 0.01 nm). It is demonstrated for NiOx that 
the supercycle can be repeated, which effectively resets the nucleation 
delay, such that a thicker film (nominally ~5 nm after 4 supercycles) can be 
deposited selectively. 

  

1. Mackus, A. J. M., Merkx, M. J. M. & Kessels, W. M. M. From the 
Bottom-Up: Toward Area-Selective Atomic Layer Deposition with 
High Selectivity. Chem. Mater.31, 2–12 (2019).  

2. Parsons, G. N. & Clark, R. D. Area-Selective Deposition: 
Fundamentals, Applications, and Future Outlook. Chem. 
Mater.32, 4920–4953 (2020).  
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3. Chaker, A. et al. Topographically selective deposition. Appl. Phys. 
Lett.114, (2019). 

  

11:00am AP+EM+PS+TF-TuM-10 A ReaxFF Study for Hacac Interaction on 
Al2O3 Surface in Area-Selective ALD, Naoya Uene, Tohoku University, 
Japan; I. Tezsevin, W. Kessels, A. Mackus, Eindhoven University of 
Technology, Netherlands; A. van Duin, Pennsylvania State University; T. 
Tokumasu, Tohoku University, Japan 

An area-selective ALD process of SiO2 was developed comprising 
acetylacetone inhibitor (Hacac), bis(diethylamino)silane precursor (BDEAS), 
and O2 plasma reactant pulses. Hacac inhibitors lead to delayed SiO2 growth 
on the Al2O3 surface for about 15 ALD cycles, after which the selectivity is 
lost. Two chemisorption configurations of Hacac inhibitors on Al2O3 surfaces 
have been reported: monodentate and chelate configurations. (Merkx et al. 
2020) Density functional theory (DFT) calculations have shown that the 
monodentate configuration is relatively reactive with incoming BDEAS, 
causing the loss of selectivity due to precursor-inhibitor reactions. 
Therefore, exploration of the relative densities of the chelate/monodentate 
configurations on the surface is crucial for the understanding of the 
selectivity loss mechanism. We aim to understand the reaction mechanisms 
of Hacac inhibitor adsorption on Al2O3 surfaces at the atomic scale. 

Up to now, the investigation of the adsorption of inhibitor molecules has 
been studied via DFT calculations. Thereactive force-field molecular 
dynamics (ReaxFF MD), which can simulate chemical reactions and physical 
dynamics at the atomic scale, has been used for gas-surface systems. (van 
Duin et al. 2001) We performed ReaxFF MD simulations to consider the 
chemical reactions of Hacac inhibitor molecules with dislocation effects on 
the surface. An initial force field has been developed for the Hacac 
interaction on Al2O3 surface based on the two existing force fields: 
Li/Si/Al/O force field for Al2O3 structure and protein force field for 
carbohydrate interactions. (Kim et al. 2016; Monti et al. 2013) The initial 
force field is trained for Hacac geometry, and their reaction on an OH-
terminated Al2O3 surface is also modeled. 

We performed ReaxFF MD simulations using the developed force field. The 
simulation consists of three steps. First, the Al2O3 surface is pre-thermally 
relaxed. Then, the Hacac inhibitor is supplied on the relaxed surface, 
followed by post-thermal relaxation of the Hacac-adsorbed surface. We first 
confirmed the temperature stability of the Al2O3 surface with different 
temperatures. Our force field can control the temperature of the Al2O3 
surface ranging from 300 K to 1500 K. Next, sequential adsorption of 20 
Hacac inhibitor molecules was simulated on the temperature-controlled 
Al2O3 surface, as shown in the supplemental document. The findings from 
our ReaxFF simulations provide in-depth insights into the mechanisms of 
Hacac adsorption and saturation on the surface. These insights will be used 
for the investigation of precursor blocking and blocking selectivity loss in 
our future work. 

11:20am AP+EM+PS+TF-TuM-11 Enhancement of TMSDMA Passivation on 
SiO2 by Surface Fluorination, Anthony Valenti, SUNY College of Nanoscale 
Science and Engineering; C. Vallée, SUNY College of Nanoscale Science and 
Engineering, France; C. Ventrice, SUNY College of Nanoscale Science and 
Engineering; K. Tapily, K. Yu, S. Consiglio, C. Wajda, R. Clark, G. Leusink, TEL 
Technology Center, America, LLC, USA 

With the ever-shrinking scale of semiconductor devices, area-selective 
atomic layer deposition (AS-ALD), a bottom-up and self-aligned patterning 
process with atomic-scale control has been in development in order to 
meet the demands of industry. This technique is typically conducted by 
promoting growth on specific surface termination types, while inhibiting 
growth on the other surface types of the substrate via selective 
chemisorption of molecules that are inert to the deposition process. With 
its affinity for chemisorbing to hydroxylated oxide surfaces, specifically 
SiO2, but not on Si or non-oxidized metal surfaces, N-
(trimethylsilyl)dimethylamine (TMSDMA) has been of recent interest for its 
use as a small molecule inhibitor (SMI) for area selective deposition (ASD). 
Upon interaction with a surface hydroxyl group, the TMSDMA molecule 
dissociates, resulting in a trimethylsilyl group bonded to the chemisorbed 
oxygen atom of the hydroxyl group. Although TMSDMA-passivated SiO2 
typically remains inert over several ALD cycles, nucleation of the growth 
precursor can eventually occur. This may be due to hydroxyl groups on the 
surface that did not interact with TMSDMA molecules and/or non-
hydroxylated sites that were not passivated by trimethylsilyl groups. For 
instance, surface siloxane bridges do not dissociate TMSDMA and can act as 
nucleation sites for the ALD growth precursor. In order to enhance the 
passivation of SiO2 surfaces, the use of co-passivants has been explored. In 

particular, a remote NF3 plasma has been studied as a means for forming a 
co-inhibitor. Dosing before or after TMSDMA treatment has been 
investigated. The deposition of the small molecules were carried out on 10 
Å SiO2/Si(100) substrates. Water contact angle measurements were taken 
to determine relative surface passivation of each sample. Angle-resolved X-
ray photoelectron spectroscopy and attenuated total reflection/Fourier 
transform infrared spectroscopy were performed in order to characterize 
the chemical state of each surface. Our results indicate that exposure of the 
substrate to the NF3 plasma after passivation with TMSDMA, results in 
damage to the passivating layer. However, exposure of the surface to the 
NF3 plasma before TMSDMA exposure maintains the passivation of the 
SiO2 surface. In addition, temperature programmed desorption (TPD) 
measurements are being conducted to assess the relative coverage of the 
inhibiting film on each sample and its thermal stability. 

11:40am AP+EM+PS+TF-TuM-12 A Study of Elucidation and Improvement 
of TiO2 Selectivity by First-Principles Based Thermodynamic Simulation, 
Yukio Kaneda, Sony Semiconductor Solutions Corporation, Japan; E. 
Marques, S. Armini, A. Delabie, M. van Setten, G. Pourtois, IMEC, Belgium
 INVITED 

Area-selective deposition (ASD) enables the deposition of materials in a 
targeted area, typically a pre-patterned surface, while preventing the 
growth on adjacent surfaces.[1] The technique is appealing for both 
academia and industry as it offers a vehicle to simplify material 
developments in nanoelectronics. Consequently, numerous efforts have 
been dedicated to investigate the factors driving the selectivity mechanisms 
and to identify optimal process deposition conditions, including surface 
treatments, that enable highly selective processes. 
 

The “selectivity” dimension results from the identification of the right 
combination of precursors (including co-agents), surface treatments, and 
reactor operating conditions. This is typically a complex and laborious 
process that requires many systematic and tightly controlled experiments. 
As a result, the development of highly selective ASD processes is often a 
slow and challenging task where any form of guidance provided by 
modeling insights can be precious. 
 

In this context, we studied, by combining thermodynamic considerations 
and first principle simulations, the reactivities of complex surface chemical 
reaction networks and the factors impacting on selectivity. In this talk, we 
will discuss the case of the ASD of TiO2 on SiO2 substrates terminated with 
either “reactive” (-OH) or “passivated” alkyl-silyl groups. First, we will first 
briefly discuss the validation of our approach by comparing our model 
prediction with experimental measurements for the case of the ALD of TiO2 
using the precursors TiCl4 and Ti(OMe)4 and then report the insights gained 
for the identification of optimum Ti precursor and inhibitor for the ASD of 
TiO2. We will then extend the discussion to the case of the ASD supercycles 
of TiO2, where the interaction of some Ti precursors (or of their ligands) 
leads to the degradation of the surface “passivation” and then requires 
restoring the surface by injecting of alkyl-silyl functional groups. We will 
review the strategies that worked with their drawbacks. 
 

[1] Gregory N. Parsons and Robert D. Clark, Chem. Mater. 2020, 32, 12, 
4920–4953 

[2] Job Soethoudt, et al.,The Journal of Physical Chemistry C2020124 (13), 
7163-7173 

[3] Janne-Petteri Niemelä et al.,Semicond. Sci. Technol.2017 9 (32), 093005 
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