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8:00am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-1 Growth and 
Characterization of Large-Area 2D Materials, Glenn Jernigan, US Naval 
Research Laboratory INVITED 

Nothing could be more coupled than Growth and Characterization. When 
two dimensional (2D) materials appeared on the radar of the scientific 
community (with the amazing properties of graphene), it was immediately 
obvious that large area samples would be needed. Exfoliating flakes was 
insufficient for the demands of scientific studies, in addition to not being 
viable should a commercial application be developed. Thus, the search 
began for growth methods to produce large-area 2D materials for large 
scale testing and development. 

The Naval Research Laboratory has, over the past 15 years, pursued 
research programs in producing large areas of graphene, transition metal 
dichalcogenides (TMDs), boron nitride (BN), and other 2D materials. In 
every one of those programs, they began with surface analysis of 
composition, chemistry, and morphology of the grown films. The uniquely 
sensitive nature of x-ray and ultraviolet photoelectron spectroscopy (XPS 
and UPS) and scanning tunneling and atomic force microscopy (STM and 
AFM) to 2D materials was necessary to measure the electrical, chemical, 
and physical properties obtained in the large area films and to understand 
what was observed in the exfoliated flakes. The production of large areas 
allowed “mass-scale” optical and electrical characterization, which then 
became a feedback loop in the search for new and interesting properties 
and relevant applications. In this presentation, I will show how we 
developed large-area graphene, by both epitaxial growth and chemical 
vapor deposition methods, TMDs, and other 2D materials for 
characterization and device utilization. 

8:40am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-3 Using a Correlative 
Approach with XPS & SEM to Measure Functionalized Fabrics for 
Antimicrobial Applications, Tim Nunney, H. Tseng, Thermo Fisher Scientific, 
UK; D. Marković, M. Radetić, University of Belgrade, Serbia 

Medical textiles are an indispensable component for a wide range of 
hygienic and healthcare products, such as disposable surgical gowns and 
masks, or personal protection equipment, with opportunities to provide 
further protection by engineering textiles with suitable medical finishing. 
While antibiotics are considered a viable option for their efficiency in 
treating bacterial infections, their abuse can result in adverse effects, e.g., 
bacteria resistance. Nanocomposites have emerged as a promising 
alternative to antibiotics, as the large surface-to-volume ratio and high 
activity helps attain the targeted antimicrobial efficiency by using tiny 
amounts of nanocomposites, and their biocompatibility and scalability are 
particularly advantageous for medical applications [1]. Thus, developing 
processing methods to integrate nanocomposites in the fabrics is essential 
for exploiting their properties for medical textiles. 

In this study, polypropylene fabrics, alginate and copper oxides, were 
selected to develop novel antimicrobial nanocomposites based on various 
surface treatments, i.e. corona discharge and alginate impregnation, which 
led to improved fabrics hydrophilicity with functional groups introduced as 
binding sites for Cu(II), a precursor that formed Cu nanoparticles when 
reacted with reducing agents, i.e. NaBH4 and ascorbic acid. The 
composition of the fabrics after being treated with corona discharge and 
impregnation observed by XPS indicates the materials formed mainly 
consisted of C and O, attributed to the presence of a thin, hydrophilic layer 
and alginate, respectively, consistent with depth profiling measurements. 
Following Cu reduction, XPS mapping of the fabrics finds that, reacting with 
ascorbic acid resulted in formation of nanocomposites containing a mixture 
of Cu and Cu (II) oxides across the surface, which could be visualised by 
using SEM in the same locations. Excellent anti-microbial activity against 
Gram-negative bacteria E. coli, Grampositive bacteria S. aureus and yeast C. 
albicans was observed for the treated fabrics[2]. This result not only 
demonstrates a cleaner, and healthier approach for developing novel 
nanocomposites, but more importantly highlights the role of surface 

techniques in uncovering challenges in designing and engineering 
functional textiles. 
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9:00am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-4 Multi-Modal 
Analysis in Photoelectron Spectroscopy: From High-Resolution Imaging to 
Operando Experiments, Olivier Renault, CEA-Leti, France; A. Benayad, CEA, 
France; N. Gauthier, CEA-Leti, France; R. Charvier, ST Microelectronics, 
France; E. Martinez, CEA-Leti, France 

Over the past years, the field of surface and interface analysis has been 
greatly expanded by new developments made possible by lab-scale 
instruments enabling higher excitation energies. These new developments 
are directly serving technological advances especially in the area of 
technologies in renewable energies and nanoelectronics, which are 
adressing more and more complex system requiring to go beyond 
traditional ways of characterizing surfaces and interfaces. Different 
dimensions are to be explored in multi-modal surface analysis : the depth 
dimension, the lateral dimension, and the dynamic dimension. 

After a short review of some of the achievements towards enhancing the 
depth dimension by lab-scale hard X-ray photoelectron spectroscopy 
(HAXPES) and the lateral dimension using X-ray PEEM, we will present 
different application cases of operando HAXPES. Here, the material is 
analyzed as being part of a device operated in situ during the experiment, 
in conditions that are as close as possible to the final applications and 
where the interfaces can be studied in dynamic conditions. We will first 
review some results of operando HAXPES on resistive memories obtained 
with synchrotron radiation [1, 2] before presenting various lab-scale 
experiments [3, 4] and the current limitations to such approaches. 

[1]B. Meunier, E. Martinez, O. Renault et al. J. Appl. Phys. 126, 225302 
(2019). 

[2]B. Meunier, E. Martinez, O. Renault et al., ACS Appl. Electron. Mater. 3 
(12), 5555–5562 (2021). 

[3]O. Renault et al., Faraday Disc. 236, 288-310 (2022). 

[4]A. Benayad et al., J. Phys. Chem. A 2021, 125, 4, 1069-81. 

9:20am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-5 Multi-Modal 
Analyses of Ultrasonic-Spray-Deposited Ultrathin Organic Bathocuproine 
Films, J. Chen, Juliet Risner-Jamtgaard, T. Colburn, A. Vailionis, A. Barnum, 
M. Golding, Stanford University; K. Artyushkova, Physical Electronics; R. 
Dauskardt, Stanford University 

Bathocuproine (BCP) is a small organic molecule that is typically used as an 
ultrathin hole blocking interlayer (< 10 nm thickness) in organic solar cells 
and perovskite solar cells. The film is typically deposited via low-throughput 
vacuum thermal evaporation with an in-situ Quartz Crystal Monitor to 
measure film thickness. Open-air ultrasonic spray deposition for low-cost 
and large-scale deposition is an attractive alternative method for solution 
processing of BCP films, but the process lacks a comparable in-situ 
metrology. Given that the BCP film is transparent to visible light and 
ultrathin, it is important to utilize a multi-modal approach to evaluate 
optoelectronic and physical properties of the sprayed film. 

A suite of characterization techniques that span a range of equipment 
complexity, measurement time, and measurement sensitivity are used to 
analyze the BCP films. We begin by demonstrating the limitations of the 
singular ellipsometry model1 for BCP found in literature and motivate a 
need to rely on other techniques. Multi-modal analyses including X-Ray 
Reflectivity, Angle-Resolved X-ray Photon Spectroscopy (AR-XPS), Auger 
Spectroscopy, Scanning Electron Microscopy, and Transmission Electron 
Microscopy with EELS are then performed on the sprayed BCP film. The 
advantages and disadvantages of each characterization technique are 
compared and discussed. We conclude that AR-XPS provides the most 
distinctive determination of individual layer thicknesses for a sample 
architecture consisting of silicon substrate/native SiOx/BCP across the 
applicable range of AR-XPS from ~ 1-10 nm. 
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9:40am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-6 Combinatorial 
Synthesis and High-Throughput Characterization of Pt-Au Thin Films 
Fabricated by Confocal Magnetron Sputter Deposition, David Adams, R. 
Kothari, M. Kalaswad, C. Sobczak, J. Custer, S. Addamane, M. Jain, E. Fowler, 
F. DelRio, M. Rodriguez, R. Dingreville, B. Boyce, Sandia National 
Laboratories 

A few binary metal alloys are predicted to form thermally stable, 
compositionally segregated structures owing to the thermodynamic 
preference for minority species to collect and remain at grain boundaries 
established within the solid.(J.R. Trelewicz et al., PRB, 2009) When 
produced as a nanocrystalline thin film, these stable structures afford the 
potential to maintain excellent mechanical properties (e.g., high hardness) 
even after annealing to elevated temperature. Indeed, several systems, 
including Pt.9Au.1 thin films, are reported to develop thermally-stabilized, 
hard, nanocrystalline structures attributed to solute segregation at grain 
boundaries.(P. Lu et al., Materialia, 2019) 

Future studies that seek optimal stoichiometry and/or preferred synthesis 
processes require access to a wide range of composition as well as an 
ability to vary key deposition parameters. Toward this end, our team 
reports on the challenges and the benefits of combinatorial synthesis for 
expediting the discovery of improved binary metal thin films. Our study 
utilized confocal sputter deposition wherein Pt and Au targets were 
individually sputtered via pulsed DC magnetron methods. Substrates (150 
mm diameter wafers) were fixed in order to gain access to a wide 
compositional range for each deposition. The sputter power and cathode 
tilt orientation were then varied in subsequent depositions to access the 
nearly full binary metal compositional range. The binary collision Monte 
Carlo program SiMTra (D. Depla et al., Thin Solid Films 2012), which 
simulates the transport of sputtered atoms within the process gas, helped 
guide the selection of these process parameters in order to achieve 
compositional goals in relatively few depositions. Notably, the binary 
compositions predicted by SiMTra closely matched (within a few molar %) 
the measured compositions determined by Wavelength Dispersive 
Spectroscopy completed in 112 different areas across each wafer. The 
various combinatorial Pt-Au films were further characterized by high-
throughput Atomic Force Microscopy, automated X-ray Diffraction, fast X-
ray Reflectivity, mapping four-point probe sheet resistance, and automated 
nanoindentation. These studies reveal how hardness, modulus, film density, 
crystal texture, and resistivity of combinatorial films varied with 
composition as well the atomistics of film deposition. Attempts to correlate 
key film characteristics with the kinetic energies and incident angles of 
arriving metal species (estimated by SiMTra) are discussed with a goal of 
improving fabrication processes. 
 

Sandia National Laboratories is managed and operated by NTESS under 
DOE NNSA contract DE-NA0003525. 

11:00am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-10 Optical and X-Ray 
Characterization and Metrology of Si/Si(1-X)Ge(X) Nanoscale Superlattice 
Film Stacks and Structures, Alain Diebold, SUNY Polytechnic Institute
 INVITED 

As traditional scaling of transistors comes to end, transistor channels and 
capacitors are being stacked to form new 3D transistor and memory 
devices.Many of these devices are fabricated using films stacks consisting of 
multiple Si/Si(1-x)Gex layers known as superlattices which must be 
fabricated with near atomic precision.In this talk, we discuss how Optical 
and X-Ray methods are used to measure the feature shape and dimensions 
of these structures.The use of X-Ray methods such as ω-2θscans and 
reciprocal space maps provide layer thickness and stress characterization. 
We will use simulations to show how a buried layer with a different 
thickness or Ge concentration alters the data. Recent electron microscopy 
studies have quantified the stress at the interfaces of these 
superlattices.We will also discuss how Mueller Matrix spectroscopic 
ellipsometry (MMSE) based scatterometry is used to measure feature 
shape and dimension for the nanowire/nanosheet structures used to 
fabricate nanosheet transistors and eventually 3D DRAM.The starting point 
for optical scatterometry is determining the optical properties of stressed 
pseudomorphic Si(1-x)Gex.MMSE can be extended into the infra-red and 
into the EUV.In addition, small angle X-Ray scattering has been adapted into 
a method knows as CDSAXS which can be used to characterize these 
structures.This talk will be an overview of these methods. 

11:40am AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-12 Non-Destructive 
Depth Differentiated Analysis of Surfaces Using Ion Scattering 
Spectroscopy (ISS), XPS and HAXPES, Paul Mack, Thermo Fisher Scientific, 
UK 

Recently there has been renewed interest in probing deeper into surfaces 
using HAXPES in addition to the more surface sensitive (soft X-ray) XPS. On 
modern XPS systems, with high sensitivity, the total sampling depth may be 
somewhere between 10nm and 15nm but HAXPES enables the analyst to 
look deeper, without having to destructively sputter the surface with ions. 
For a complementary, more comprehensive analysis, XPS and HAXPES can 
be combined with Ion Scattering Spectroscopy (ISS). ISS is far more surface 
sensitive than XPS, typically being thought of as a technique to analyse the 
top monolayer of a sample for elemental information. 

In this work, the combination of XPS, HAXPES and ISS on a single tool has 
been used to give a non-destructive depth differentiated analysis of a range 
of samples, including a perovskite and an industrially relevant material 
containing multiple transition metals. The combination of all three 
techniques provides insight into the depth distributions of elements and 
chemical states, from the top monolayer to beyond 20nm into the surface. 

12:00pm AS+2D+CA+EL+EM+MS+NS+SE+SS+TF-WeM-13 Towards 
Measurement of Molecular Shapes Using OrbiSIMS, Gustavo F. Trindade, 
J. Vorng, A. Eyres, I. Gilmore, National Physical Laboratory, UK 

An OrbiSIMS [1] instrument features a dual analyser configuration with a 
time-of-flight (ToF) mass spectrometer (MS) and an OrbitrapTM MS, which 
confer advantages of speed and high-performance mass spectrometry, 
respectively. The ability to combine the MS performance usually found in a 
state-of-the-art proteomics and metabolomics MS with 3D imaging at the 
microscale and from nanolayers of <10 nm of material has proved popular 
in a broad field of application from organic electronics to drug discovery. 
For secondary ions to be efficiently transferred to the Orbitrap analyser, the 
sample is biased by a target voltage VT necessary to match the acceptance 
window of the Orbitrap. Furthermore, the ions kinetic energy from the 
SIMS collision process must be reduced. Therefore, in the OrbiSIMS, a 
transfer system with helium gas at a pressure PHe slows the ions and 
reduces their kinetic energy distribution through inelastic collisions with gas 
atoms. Usually, an Orbitrap is used with an ambient pressure ion source 
and so here an extra gas flow of nitrogen is introduced that leads to an 
increase of pressure PN2 to compensate. 

We conducted a systematic assessment of VT and PHe and PN2 on the 
transmitted secondary ion intensities [2] and revealed a complex behaviour, 
indicating the possibility for additional separation of ions based on their 
shape, stability, and kinetics of formation. We showed that the VT for 
maximum transmission of secondary ions will not be the same for all 
molecules of the same material and that sometimes multiple maxima exist. 
Here, we present recent progress towards the understanding of these 
phenomena and how we are leveraging it to measure molecular shape by 
using reference trisaccharides raffinose, maltrosiose and melozitose [3]. 

 
 

[1] M. K. Passarelli et al., “The 3D OrbiSIMS—label-free metabolic imaging 
with subcellular lateral resolution and high mass-resolving power,” Nat. 
Methods, no. november, p. nmeth.4504, 2017, doi: 10.1038/nmeth.4504. 

[2] L. Matjacic et al., “OrbiSIMS metrology part I: Optimisation of the target 
potential and collision cell pressure,” Surf. Interface Anal., no. November 
2021, pp. 1–10, 2021, doi: 10.1002/sia.7058. 

[3] G.F. Trindade et al., In preparation. 
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