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Moderators: Luxherta Buzi, IBM, Petra Reinke, University of Virginia 

2:20pm QS+SS-TuA-1  Quantum Sensing Enabled by Spin Qubits in 
Diamond , Fedor Jelezko, Institute of Quantum Optics, Ulm University, 
Germany INVITED 

Synthetic diamond has recently emerged as a candidate material for a 
range of quantum-based applications including quantum information 
processing and quantum sensing. In this presentation we will show how 
single nitrogen-vacancy (NV) colour centres can be created with a few 
nanometers accuracy and coherent dipole-dipole coupling was employed to 
generate their entanglement. Single NV centers and clusters of entangled 
spins created close to the diamond surface can be employed as nanoscale 
sensors of electric and magnetic fields. We will show nanoscale NMR 
enabled by single NV centers and discuss sensitivity and spectral resolution 
limits of nanoscale NMR. We will also discuss applications of NV centres for 
hyperpolarization of nuclear spins and application of optical spin 
polarization in MRI. 

3:00pm QS+SS-TuA-3 Tunneling Andreev Reflection - New Quantitative 
Microscopy of Superconductors with Atomic Resolution, W. Ko, University 
of Tennessee Knoxville; S. Song, J. Yan, Oak Ridge National Laboratory; C. 
Lane, Los Alamos National Laboratory; J. Lado, Aalto University, Finland; 
Petro Maksymovych, Oak Ridge Natinal Laboratory 

Andreev reflection is an established method to probe the existence of 
superconductivity, and, crucially, the symmetry of the superconducting 
order parameter. In its conventional implementation of the point contact 
Andreev reflection (PCAR), the technique relies on so-called directional 
contacts, which inject quasiparticles into superconductors with well-
defined momentum. However, good momentum resolution requires a 
trade-off for essentially no spatial resolution, which has limited the 
applicability of PCAR to atomic-scale properties of superconductors, 
including inhomogeneities and interfaces. 

In this talk, we will present our latest developments in Tunneling Andreev 
Reflection - a new experimental approach which we recently introduced to 
quantify Andreev reflection through atomic-scale tunnel junction [1]. 
Similar to PCAR, TAR exhibits direct sensitivity to the superconducting order 
parameter in both conventional and unconventional superconductors [2]. 
Recently, we used TAR to unambiguously confirm the sign-changing order 
parameter in paradigmatic FeSe, and further revealed suppression of 
superconductivity along the nematic twin boundaries above 1.2 K [2]. 
Locally suppressed superconductivity, in turn, explains the peculiar vortex 
templating effect exerted by twin boundaries - essentially causing 
recrystallization of the vortex glass phase [3]. However, due to atomic-
spatial resolution TAR lacks momentum resolution - the opposite of PCAR. 
Therefore, the measurements, observables and their interpretation are 
fundamentally distinct from PCAR as well. We will discuss our present 
understanding of this technique, relevant methods of data analysis needed 
to reveal Andreev signal, and specific effects of band structure on TAR. 
These effects are crucially important for robust characterization of 
unconventional superconductivity, while also enabling TAR to complement 
tunneling spectroscopy and quasiparticle imaging in search for exotic 
quantum materials. Research sponsored by Division of Materials Science 
and Engineering, Basic Energy Sciences, Office of Science, US Department 
of Energy. SPM experiments were carried out as part of a user project at 
the Center for Nanophase Materials Sciences, Oak Ridge National 
Laboratory, a US Department of Energy Office of Science User Facility. 
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3:20pm QS+SS-TuA-4 Patterned-Stress-Induced Compositional 
Manipulation of Epitaxially Grown Semiconductors for Quantum 
Applications, Leonid Miroshnik, University of New Mexico; B. Rummel, 
Sandia National Laboratories; M. Patriotis, University of New Mexico; A. Li, 
T. Sinno, University of Pennsylvania; M. Henry, Sandia National Laboratories; 
G. Balakrishnan, S. Han, University of New Mexico 

We have previously demonstrated compositional patterning of epitaxially 
grown compound semiconductors, using lithographically patterned 
nanoscale pillars as a mechanical press.1-3 The elastically introduced strain 
from the press, at elevated temperatures, steers large atoms out of the 
compressed region of compound semiconductors (e.g., indium in InGaAs) 
to form quantum confined structures. This approach allows forming 
quantum structures at desired locations in an addressable manner. In this 
work, we describe a new approach to introduce a patterned stress field to 
semiconductor films, using Surface Acoustic Waves (SAW) generated by 
Interdigitated transducers (IDTs). We fabricate SAW devices on GaAs(100) 
substrate and demonstrate that we can image standing surface acoustic 
waves using 2D Raman spectroscopy as well as atomic force microscopy.4 
The magnitude of these waves, upon optimization of SAW devices5, reaches 
greater than 5 nm, introducing 100s of MPa stress. We will share the stress 
characterization and optimization approach in this presentation and assess 
the likelihood of using the stress field to induce compositional patterning. 

This material is based upon work supported by the National Science 
Foundation under Grant No. DMR-1809095 
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4:20pm QS+SS-TuA-7 Atomic Tunneling Defects in Superconducting 
Quantum Circuits: Origins and Remedies, Jürgen Lisenfeld, Karlsruhe 
Institute of Technology (KIT), Germany INVITED 

Parasitic two-level systems formed by defects in the materials of 
superconducting qubits are a major source of decoherence. I will review the 
defects' origins, and discuss possible ways to mitigate their detrimental 
impacts. A focus will be set on recent experiments in Karlsruhe, where we 
develop novel methods to in-situ control defect properties by applied 
mechanical strain and electric fields. E-field tuning of defects provides a 
possibility to mitigate energy loss of qubits due to resonant defects. It also 
allows us to identify the locations of defects in a given quantum circuit 
which helps to guide the way towards better qubit fabrication. 

5:00pm QS+SS-TuA-9 Mechanistic Investigations of Superconducting Film 
Growth: Substrate-Mediated Sn Diffusion on a Niobium Oxide, Sarah 
Willson, University of Chicago; R. Farber, University of Kansas; S. Sibener, 
University of Chicago 

Niobium is the highest temperature elemental superconductor, making it 
the standard material for superconducting radiofrequency (SRF) cavities in 
next-generation linear accelerators. These facilities require cryogenic 
operating temperatures (< 4 K) to limit the formation of superconductivity-
quenching hot spots in the near-surface region of the cavity. Widespread 
efforts are underway to increase the accelerating fields and reduce the 
cryogenic burden by improving SRF surfaces. 

A promising solution is to coat the Nb SRF surface with a Nb3Sn thin film via 
Sn vapor deposition. The higher critical temperature and critical field makes 
Nb3Sn an ideal candidate for capping Nb surfaces. However, the persistence 
of defects, stoichiometric inhomogeneities, and excessive surface 
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roughness in formed these Nb3Sn films nucleate quenching sites – limiting 
the SRF performance. 

As part of a widespread interdisciplinary effort to optimize SRF accelerating 
capabilities, this work aims to develop a comprehensive growth model for 
pristine Nb3Sn films. We aim to understand the interplay between the 
underlying Nb oxide morphology, Sn coverage, and Nb deposition 
temperature on Sn wettability and Nb3Sn growth mechanisms. Alloy films 
are grown on single crystal and polycrystalline Nb surfaces terminated with 
a diverse range of morphologies and analyzed using both in situ and ex situ 
techniques. 

Characterization of initial Sn/NbxOy phases provide insight towards the 
dynamic and reactive interface that templates Nb3Sn films. Complementary 
experiments of Nb3Sn films grown at higher Sn coverages further illustrate 
how the diverse underlying Nb oxide surface morphologies impact the 
quality, and ultimately the accelerating performance, of these SRF surfaces. 

5:20pm QS+SS-TuA-10 Revealing Pairing Symmetry of Superconductors by 
Tunneling Andreev Reflection, Wonhee Ko, University of Tennessee, 
Knoxville; S. Song, J. Yan, Oak Ridge National Laboratory; J. Lado, Aalto 
University, Finland; P. Maksymovych, Oak Ridge National Laboratory 

Andreev reflection (AR) is an electronic transport process at the junction of 
a normal metal and a superconductor, where the electrons in the normal 
metal transform to the Cooper pairs by retroreflecting holes and conducts 
current across the junction. The process is highly sensitive to the 
superconducting order parameters and functions as a tool to directly probe 
the superconductivity. Based on AR, we developed a new technique, 
tunneling Andreev reflection (TAR), by applying AR to the tunnel junction in 
scanning tunneling microscope (STM) [1,2]. Specifically, we precisely tune 
the STM tip-sample distance to systematically study the AR as a function of 
the tunneling barrier height. Since the AR is a higher order tunneling 
process compared to the normal electron tunneling, the relative decay rate 
of the tunneling conductance increases inside the superconducting gap, 
whose specific shape depends on the nature of the superconductivity [3]. 
By comparing the decay rate spectra with the theoretical calculations, we 
identify the pairing symmetry of various kinds of superconductors, from 
conventional s-wave ones to the unconventional high-Tc ones such as iron-
based or cuprate superconductors. 

This research was performed at the Center for Nanophase Materials 
Sciences which is a DOE Office of Science User Facility. 
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5:40pm QS+SS-TuA-11 Single-nm-Resolution Gate Fabrication for Top-
Gated Quantum Dot Qubits, J. Owen, Joshua Ballard, E. Fuchs, J. Randall, 
Zyvex Labs; F. Beaudoin, Nanoacademic Technologies, Canada; A. Sigillito, 
U. Pennsylvania 

Top gated semiconductor quantum dot qubits represent an attractive path 
to quantum computing. However, variations in the physical dimensions of 
the top gates create significant variations in the electrostatic confinement 
and therefore the energy levels in the qubit. The variation in gate 
dimensions complicates the design of multi qubit systems and the required 
tuning of the biases on the gates for multiple qubits is so complex that 
machine learning is employed. 

Multiple modeling runs of a generic top gated multi-qubit system carried 
out with the spin-qubit computer-aided design tool QTCAD has found that a 
variation in the gate dimensions of ~2 nm causes a factor of 2 change in the 
tunneling rates, or a factor of 4 in the Exchange Interaction strength. This 
level of precision is not achievable using e-beam lithography where the 
proximity can cause an increase in the written feature width by 15 nm 
compared to the pattern. 

We describe an alternative path which uses Atomic Precision Lithography[1] 
to create far more precise gates. Two methods to transfer the pattern into 
the gate structures are described; either saturate the patterns with dopant 
precursors to make dopant-based gate structures or growing area-selective 
etch mask material. The former will preserve the precision, but is less 
compatible with CMOS processes. Otherwise, area-selective atomic layer 
deposition and reactive ion etching can be used to make nanoimprint 
templates[2]. The accuracy of templates thus produced, and the precision 

of Jet and Flash Nanoimprint lithography will produce far more uniform top 
gates with a scalable manufacturing technique. 
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Baczewski, A. D.; Misra, S. Atomic – Precision Advanced Manufacturing for 
Si Quantum Computing. MRS Bull.2021, 46, 1–9. 

2. Ballard, J.; McDonnell, S.; Dick, D.; Owen, J.; Mordi, G.; Azcatl, A.; 
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6:00pm QS+SS-TuA-12 The Changing Role of National Metrology Institute 
with Quantum-Based Standards and the Nist on a Chip Program, Jay 
Hendricks, B. Goldstein, NIST 

This oral presentation covers a bit of metrology history of how we got to 
where we are today and gives a forward-looking vision for the future of 
measurement science.The role of NIST as a National Metrology institute 
(NMI) is briefly described considering the world-wide redefinition of units 
that occurred on May 20th, 2019.The re-definition of units is now aligned 
with physical constants of nature and fundamental physics which opens 
new realization routes with quantum-based sensors and standards. The 
NIST on a Chip program (NOAC) is briefly introduced in this context.The re-
definition of the SI units enables new ways to realize the units for the 
pascal and the kelvin.These quantum-based systems; however exciting, do 
raise new challenges and several important questions: Can these new 
realizations enable the size and scale of the realization to be miniaturized to 
the point where it can be imbedded into everyday products?What will be 
the role of metrology institutes in the is new ecosystem of metrology and 
measurement?What will be the NMI role for quality systems and 
measurement assurance for these new quantum-based systems? This talk 
will begin to explore these important philosophical questions. 
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