Electrocatalytic Activity of Size-Selected Sub-Nano Pt Clusters Toward the Hydrogen Evolution Reaction

<u>Tsugunosuke Masubuchi¹</u>, Simran Kumari², Zisheng Zhang³, Philippe Sautet^{2,3,4}, Anastassia N. Alexandrova^{3,4}, Henry S. White¹, Scott L. Anderson^{1*}

¹Department of Chemistry, University of Utah

²Department of Chemical and Biomolecular Engineering, University of California Los Angeles ³Department of Chemistry and Biochemistry, University of California Los Angeles ⁴California NanoSystems Institute, University of California Los Angeles

Fig. S3. Cyclic voltammograms with Pt_n (n = 1, 4, 7, 8) working electrodes (support: indium tin oxide) in a 0.1 M HClO₄ electrolyte solution, showing the size-dependent activity for the hydrogen evolution reaction. Only anodic currents are plotted.