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8:20am BI+AS+PS-MoM-1 Supported Lipid Bilayers as Model Systems to 
Understand Molecular Interactions at Complex Solid/Liquid Interfaces, 
Pierluigi Bilotto, Centre for Electrochemistry and Surface Technology, 
Austria; L. Mears, M. Valtiner, Vienna University of Technology, Austria 

Generating a detailed molecular understanding of complex, simultaneous 
inter actions at reactive and/or dynamic solid|fluid interfaces is a challenge 
across disciplines, and has intrigued researchers for decades.[1, 2] Whether 
it is, for example, in medical adhesives, friction of articular cartilage,[3] or 
the adhesion of organisms in seawater,[2] complex macroscopic properties 
at crowded biologic solid|liquid interfaces are mediated by large numbers 
of individual nanoscale interactions.[4] Exactly this complex competition 
and molecular structuring at interfaces are central to a multitude of 
interfacial phenomena, such as membrane transport,[5] membrane 
conductance, [6,7] cellular adhesion [8] and adhesion regulation in the 
marine environment. [9] 

In our previous works, we characterised a lipid-based model system (LMS) 
in terms of its stability and bending properties by employing atomic force 
microscopy and surface forces apparatus. [10] Then, we further modified 
its outer face with amine-terminating polymers to investigate the specific 
electrostatic interaction between the amine and a negatively charged mica 
surface. Then, we examined how interaction forces are affected by the 
electrolyte concentration, funding a direct exponential like decay between 
adhesion and electrolyte concentration. Specifically, we found a decrement 
of 90% in adhesion in a 1M sodium chloride environment. These fundings 
suggested the presence of a competing mechanism which was confirmed 
by a kinetic model at the interface involving two competing Langmuir 
isotherms. Finally, we could estimate ion/surface interaction energies from 
the experimentally recorded interaction force measurements.[11] 

In the talk we will discuss these works and present the new research 
opportunities coming out from these results. 
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8:40am BI+AS+PS-MoM-2 Recombinant Lubricin Improves Anti-Adhesive, 
Wear Protection and Lubrication of Collagen II Surface, H. Yuan, Tianjin 
University, China; Laura Mears, Vienna University of Technology, Austria; 
R. Su, Tianjin University, China; M. Valtiner, Vienna University of 
Technology, Austria 

Lubrication in articular joints is regulated by a number of biomolecules 
including the collagen of the cartilage, lubricin and lipids in the synovial 
fluid. Camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is 
a joint disease, which causes a lack of lubricin, leading to failed lubrication 
as well as abnormal deposition at cartilage surfaces. Injection of 
recombinant lubricin (R-LUB) is a promising way to treat the disease. Here, 
the protein adsorption and lubrication behavior of type II collagen (COL II), 
mimicking the cartilage surface, upon R-LUB injection were followed by a 
surface plasmon resonance spectroscopy and surface forces apparatus. The 
results indicated R-LUB can bind well on COL II surface and the layer of COL 
II/R-LUB complex exhibited a much lower nonspecific adsorption of BSA 
(3.25 ng/cm2) and LYS (0.26 ng/cm2) compared to those of the COL II layer 
(32.7 ng/cm2, 7.26 ng/cm2), respectively. Normal force measurement 

demonstrated there were repulsive forces between the COL II/R-LUB 
complex and different surfaces with -COO-, -NH3

+ and -CH3 groups. 
Likewise, COL II had a high coefficient of friction (µ∼0.48) with surface 
damage at 2 μm/s and wear pressure of 1.56 MPa. In contrast, the 
coefficient of friction of COL II/R-LUB complex was dramatically decreased 
to ∼0.014-0.13 with surface damage at 13 μm/s, the complex even shows 
an ultralow coefficient of friction of 0.008 at the lowest loading <3 mN. 
Furthermore, R-LUB modification boosts the strength of the surface against 
abrasive wear (damage) of 11.96 MPa, which was 7.7 times higher than 
that of COL II alone. Hence, R-LUB may act as an anti-adhesive and 
lubrication layer adsorbed on COL II surfaces to develop strong steric-
repulsive interactions and lubrication to prevent direct surface contact. Our 
results provide fundamental insights into the adsorption and lubrication 
behavior for understanding biological lubrication, especially using R-LUB for 
CACP disease treatment. 

9:40am BI+AS+PS-MoM-5 Hyaluronic Acid-Dopamine Conjugate for Facile 
Deposition onto Collagen I with Enhancing Anti-Adhesion and Lubrication, 
H. Yuan, Tianjin University, China; L. Mears, M. Valtiner, Vienna University 
of Technology, Austria; Rongxin Su, Tianjin University, China 

Collagen I matrix (COL I) has been applied clinically for repairing damaged 
cartilage, but it has poor protein resistance and insufficient lubrication 
performance, which seriously affects the repairing performance for 
cartilage. Hyaluronic acid (HA) has good anti-adhesive and lubrication 
properties, and seems to be a potential candidate to improve treatment 
with COL I, but it cannot be immobilized onto the collagen surface. Inspired 
by mussels, dopamine (DA) was chemically grafted to HA to form the HADA 
conjugate, which could firmly adhere to the surface of COL I by dopamine 
oxidation and reacted with amine from COL I. The protein resistance and 
lubrication properties of COL I and HADA-modified COL I (COL I/HADA) 
surfaces were followed by quartz crystal microbalance with dissipation and 
surface force apparatus techniques. The optimal modified time of HADA on 
COL I surface was 8 h. The nonspecific adsorption of bovine serum albumin 
(BSA) and lysozyme on COL I/HADA were reduced to 1/25 and 1/42 of that 
on COL I. COL/HADA also displayed very good resistant to high 
concentrations of BSA. Upon HADA modification, the interaction force 
between COL I and the surfaces with positive and negative charges sharply 
decreased from 2-6 mN/m to 0, demonstrating that the COL I/HADA 
surface had a strong anti-adhesion property. The coefficient of friction of 
COL I (∼0.65) was quite high displaying poor lubricating ability, while that 
of COL I/HADA reduced to ∼0.16. Upon HADA modification, the wear 
occurred at a shear rate of 14 μm/s, and the surface resistance to abrasive 
wear (damage) was greatly improved to 9.7 MPa, about 12 times higher 
than the COL I surface. These results indicated that HADA-modified COL I is 
a promising anti-adhesive and lubricating joint repair material, especially in 
the field of osteoarthritis treatment. 

10:00am BI+AS+PS-MoM-6 Anti-Fouling Properties of Amphiphilic 
Zwitterionic Hydrogels, Lisa Schardt, Ruhr University Bochum, Germany; A. 
Martínez Guajardo, University of Potsdam, Germany; J. Koc, Ruhr 
University Bochum, Germany; J. Clarke, J. Finlay, A. Clare, Newcastle 
University, UK; H. Gardner, G. Swain, K. Hunsucker, Florida Institute of 
Technology; A. Laschewsky, University of Potsdam, Germany; A. 
Rosenhahn, Ruhr University Bochum, Germany 

Hydrogels exhibit excellent biocompatibility and resistance against 
nonspecific attachment of organisms most likely due to their stable 
hydration shell.[1] Zwitterionic polymers like the sulfobetaine N-(2-
methacryloxy)-ethyl-N,N-dimethylammoniopropansulfonate (SPE) are 
promising candidates foranti-fouling coatings. However, due to low 
mechanical strength, their performance in the field is limited.[2] N-butyl 
methacrylate (BMA) was added in amounts between 0 and 50% to 
copolymers containing SPE and the photocrosslinker 2-(4-
benzoylphenoxy)ethyl methacrylate (BPEMA) to tune the hydrophilicity of 
the resulting hydrogel properties. The rearrangement of the polymer upon 
immersion in seawater was characterized by under-water contact angle 
goniometry. The swelling and resistance against mineral particles were 
measured with surface plasmon resonance (SPR) and sediment immersion 
tests. Biological anti-fouling experiments were performed using Ulva linza 
and field tests. Upon immersion in saltwater, the polymer chains 
rearranged to form hydrophilic surfaces and the degree of swelling 
depended on the salt concentration. The incorporation of BMA successfully 
altered the mechanical properties of the coatings resulting in a lower silt 
uptake. At the same time, the amphiphilicity did not hamper the anti-
fouling performance in laboratory assays and a decrease of the settlement 
was observed in field tests.[3] 
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10:40am BI+AS+PS-MoM-8 Mussel Adhesion: A Fundamental Perspective 
on Factors Governing Strong Underwater Adhesion, L. Mears, J. 
Appenroth, A. Celebi, A. Imre, H. Yuan, TU Wien, Austria; P. Bilotto, CEST 
Centre for Electrochemistry and Surface Technology, Austria; R. Su, Tianjin 
University, China; Markus Valtiner, TU Wien, Austria 

Tuning interfacial electrochemistry is central to the principle of the strong 
underwater adhesive of mussels. Here we critically discuss recent progress 
in the field, and we discuss how interfacial electrochemistry can vary 
interfacial forces by a concerted tuning of surface charging, hydration 
forces and tuning of the interfacial ion concentration. Mussel foot proteins 
contain a number of different functional groups, with much focus directed 
towards the catechol moiety. Therefore, we discuss some of our recent 
results in the area of adhesion of different functional groups in a saline 
environment. We also present new data from electrochemical surface 
force apparatus experiments that explore the difference in adhesion for 
oxidized and reduced forms of the catechol functional group against a 
mineral, mica, in different environments. These results raise interesting 
questions about the role of the catechol group. We propose new paths into 
understanding and utilizing redox-proteins and derived polymers for 
enhancing underwater adhesion in a complex salt environment. 

11:00am BI+AS+PS-MoM-9 Bioinspired Underwater Adhesives Using 
Amyloids from Commonplace Proteins, M. Wilson, NRC Post-doctoral 
Fellow sited at the Naval Research Laboratory, Chemistry Division; M. 
Beasley, NRC post-doc sited at the Naval Research Laboratory, Chemistry 
division; K. Fears, Naval research laboratory, Chemistry Division; E. Yates, 
US Naval Academy, Chemistry Department; Christopher So 1 , Naval 
Research Laboratory, Chemistry Division 

Barnacles adhere permanently underwater using proteins that are 
delivered as a liquid, triggered to assemble, and cure as a bulk amyloid 
material in extreme seawater environments. More cosmopolitan than most 
other fouling organisms, barnacles rely on these materials to remain stuck 
at frigid ocean depths, as well as on hot intertidal coasts. We have 
previously been successful in designing sequences that can mimic the 
natural glue chemistry and structure, however bridging the gap between 
natural sequences and materials of practical use remains a challenge. Here, 
we mimic protein aggregation from the barnacle with unmodified food 
proteins as model systems and fabricate adhesives by curing them at the 
adhesive joint. We use temperature and time to control protein assembly 
and define the relationship between biophysical state and adhesive 
strength. Using thermal processing, we fabricate adhesives that approach 
the underwater lap shear strength of commercial marine and 
contemporary bioinspired chemistries. Though we observe differences in 
adhesive behavior between the examined proteins and their aggregation 
state, the presence of amyloids improves underwater performance across 
all proteins studied. We show that commonplace proteins can be delivered 
as a liquid, triggered to cure with chemistry or heat, and form strong 
underwater adhesives at the contact. The aggregation of commonplace 
proteins is therefore a viable pathway in creating strong underwater 
adhesives which, like the organisms that use them, can operate in extreme 
underwater conditions. 

11:20am BI+AS+PS-MoM-10 Incorporation of Antimicrobial Cyclic 
Peptides in Polymeric Materials, D. Regan, Q. Lu, D. Barlow, Kenan Fears, 
US Naval Research Laboratory 

Polymeric coatings are used universally to protect structural materials and 
extend their operational lifetime. Microbial growth on these coatings, if 
unmitigated, present health risks and can diminish the protective 
performance of the coatings. For example, fungi have been linked to the 
degradation of aircraft surface coatings which can lead to corrosion of the 
underlying metals. After bans on heavy metal mixtures within surface 
treatments, a commercial void remains for a solution to prevent 
biodegradation of material surfaces. Building on the advancements within 
cyclic peptide synthesis, we test the antimicrobial activity of alpha and beta 
conformations of cyclic peptides against microorganisms of medical and 
industrial interest. Minimum inhibitory concentration (MIC) and microbial 
growth assays showed that cyclic peptides exhibited broad spectrum 
activity against gram-positive and gram-negative bacteria, yeasts, and 
algae. Furthermore, the cyclic peptides were mixed into a commercial 
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polyester polyurethane coating, Irogran, and exposed to cultured isolates 
of biodegrading yeasts. For both cyclic peptide-Irogran blends, zero colony 
forming units were detected after a one-week exposure. These findings 
demonstrate how synthesized cyclic peptides retain their antimicrobial 
activity after incorporation into polymeric surface coatings to prevent the 
growth of problematic microorganisms. 

11:40am BI+AS+PS-MoM-11 Tuning Amphiphilicity of Alginic Acid-Based 
Polyelectrolyte Multilayers to Enhance Marine Fouling Resistance, Jana  
Karthäuser, T. Gnanasampanthan, S. Spöllmann, R. Wanka, H. Becker, A. 
Rosenhahn, Ruhr University Bochum, Germany 

Polysaccharides are among other naturally occurring polymers commonly 
used in fouling-resistant coatings for both marine and medical applications. 
The anionic polysaccharide alginic acid (AA) is a non-toxic, eco-friendly, and 
readily accessible biopolymer that is widely used for biomedical purposes 
because of its high water-binding capacity. Thus, alginic acid is an 
interesting and promising building block to produce marine antifouling 
coatings. Unfortunately, in seawater, the biopolymer loses its antifouling 
efficacy due to the complexation of bivalent ions. An approach to 
overcome the susceptibility of charged polysaccharides, such as AA, is the 
blocking of the carboxylate groups by hydrophobic functional groups. The 
incorporation of amphiphilic moieties additionally changes the 
physicochemical properties of the coating and enables the tuning of 
fouling-resistant properties.1Layer-by-layer assembly of polyelectrolytes is 
a versatile and common technique to produce highly defined and 
reproducible coatings. The use of different or differently modified 
polyelectrolytes with opposite charges enables the charge-driven 
assembly.2 To introduce amphiphilicity, different degrees of carboxyl 
groups of alginic acid were modified with pentafluoropropylamine. The 
influence of the amphiphilicity on the physicochemical characteristics of 
the modified alginic acid itself as well as of the coatings, when used 
alternately deposited with polyethyleneimine in multilayers, were 
investigated. Subsequently, the different degrees of modification of the 
AA-containing coatings with respect to the non-specific attachment of 
proteins by surface plasmon resonance spectroscopy and marine fouling 
organisms by attachment assays were examined in more detail and 
revealed an improved fouling resistance with increasing amphiphilicity. 
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