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8:00am AP+AS+EM+HI+PS+SS+TF-TuM-1 New Precursors and Approaches 
to ALD and AS-ALD of Metals, Mikko Ritala, University of Helsinki, Finland
 INVITED 

Metal ALD is a topic where high technological relevance combines with 
inspiring and challenging scientific questions. As always, the success of ALD 
builds on chemistry. There is constant need for new precursors enabling 
ALD of metals of interest with improved characteristics. A major challenge 
arise from the strong tendency of metals to agglomerate, hence preventing 
achieving continuous films at the smallest thicknesses. Lowering of the 
deposition temperature is of utmost importance to limit the 
agglomeration. This requires highly volatile and reactive metal precursors 
and reducing agents. 1,4-bis(trimethylgermyl)-1,4-dihydropyrazine 
((Me3Ge)DHP) is a new reducing that is found more efficient than its earlier 
reported silicon analogue. NiCl2(PEt3)2 in turn represents a series of metal 
halide adduct compounds of nickel and cobalt where the poorly volatile 
parent halides are made volatile by proper adduct ligands. The NiCl2(PEt3)2 - 
(Me3Ge)DHP combination affords deposition of Ni at 110 °C which is the 
lowest temperature for thermal ALD of Ni so far. (Me3Ge)DHP enables also 
deposition of gold. This is the first reductive thermal ALD process of gold. 

Area-selective ALD of metals is an important topic for self-aligned thin-film 
patterning. An entirely new approach to this is area-selective etching of 
polymers. In these etching processes the selectivity arises from the 
materials underneath the polymer layers. Both O2 and H2 can be used as an 
etchant gas. Etching gas molecules diffuse through the polymer film, and if 
they meet a catalytic surface underneath, the molecules become 
dissociated into their respective atoms which then readily react with the 
polymer etching it away. On noncatalytic surfaces the polymer film 
remains. When combined with area-selective ALD, self-aligned etching of 
polymers opens entirely new possibilities for the fabrication of the most 
advanced and challenging semiconductor devices. An example is given 
where the area-selective etching of polyimide from Pt was followed by 
area-selective ALD of iridium using the patterned polymer as a growth-
inhibiting layer on SiO2, eventually resulting in dual side-by-side self-aligned 
formation of metal-on-metal and insulator (polymer)-on-insulator. 

8:40am AP+AS+EM+HI+PS+SS+TF-TuM-3 Comparing Interface and Bulk 
Physicochemical Properties of TiO2 Deposited by PEALD Assisted by 
Substrate Biasing on Thermal SiO2 and TiN Substrates, for Area Selective 
Deposition Application, Jennifer Not, LTM - MINATEC - CEA/LETI, France; L. 
Mazet, STMicroelectronics, France; T. Maindron, Minalogic, France; R. 
Gassilloud, CEA-LETI, France; M. Bonvalot, LTM - MINATEC - CEA/LETI, 
France 

To bypass the limitations implied by the miniaturization of electronic 
components, area selective deposition (ASD) is becoming a key point of 
focus, as photolithography steps are avoided. This bottom-up promising 
technique, as opposed to the top down approach inherent to etching, relies 
on nucleation mechanisms resulting from substrate - precursor 
interactions. Differing nucleation kinetics may indeed be observed under 
very same experimental conditions,1 allowing a growth delay on a surface 
type while simultaneously promoting growth on a different surface. 
 

Atomic Layer Deposition (ALD) remains a technique of choice to obtain 
area selective deposition. Based upon the self-limiting nature of surface 
reactions, this technique enables a conformal deposition with atomic-scale 
thickness precision, and is gradually becoming a major deposition process 
in the microelectronic industry. 
 

The ALD reactor used in this study includes an ICP deported plasma source 
and is equipped with an additional RF polarization kit at the back side of 
the chuck, enabling plasma ion extraction from the source towards the 
substrate surface. Depending on the ion incident kinetic energy, which can 
be tuned as a function of the applied polarization bias, this ion flux can 
modulate the properties of the thin film under growth, opening new 
perspectives of physicochemical properties. These properties may also vary 
according to the substrate surface, making this RF polarization kit an 
interesting experimental knob for the development for ASD processes2. 
 

PEALD TiO2 layers of various thicknesses have been deposited with no air 
break on a 15 nm-thick TiN layer, as well as on a 100 nm-thick thermal SiO2 
substrate, under various polarization bias power from 0 W to 80 W. The 
purpose of this work is to physically and chemically characterize the 
obtained thin films with respect to substrate surface, and to understand 
how these properties evolve with the film thickness and for various bias 
values. X-Ray Reflectivity (XRR), Grazing Incident X-Ray Diffraction (GIXRD), 
in-situ and ex-situ ellipsometry and Angle Resolved X-ray Photoelectron 
Spectrometry (AR-XPS) measurements have been performed, providing 
detailed information on chemical bond formation during nucleation and 
within the bulk TiO2 layer, and thin film physical properties, such as 
thickness, density, roughness and crystallinity. The outcome of this study 
gives some insight into the benefit of bias for area selective deposition of 
TiO2 thin films on TiN against SiO2. 
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9:00am AP+AS+EM+HI+PS+SS+TF-TuM-4 Area Selective Atomic Layer 
Deposition of SnO2 as An Etch Barrier, Xin Yang, University of Texas at 
Austin; B. Coffey, Lam Research Corp; J. Ekerdt, University of Texas at 
Austin 

Reactive ion etching (RIE) is widely used in semiconductor nanofabrication 
processes since it can provide high etch rate, high selectivity, and high 
anisotropy. Traditional etch masks such as organic photoresists suffer from 
shortcomings such as low etch selectivity. Other material systems have 
been investigated to improve the selectivity. Sn(0)-containing block 
copolymers were demonstrated as materials for nanolithographic 
applications. 

Here we propose SnO2 as a RIE etch mask in fluorine-based etching 
processes. Tin forms nonvolatile compounds with fluorine enabling tin to 
function as an etch mask. We establish processes that create SnO2 grid 
patterns, which can be transferred into the Si native oxide substrate using 
SF6 RIE. The concept is illustrated using a 1000-mesh copper TEM grid as an 
ultraviolet light shadow mask to generate patterns in polystyrene. SnO2 
patterns are achieved by area selective atomic layer deposition (ALD) using 
tetrakis(dimethylamino) tin(IV) and H2O as ALD precursors on a Si native 
oxide at 170 °C. The selective growth can be directed by the hydrophilicity 
of the substrate surface. ALD growth of SnO2 shows no nucleation delay on 
Si native oxide, which is hydroxylated. By coating the substrate with a 
polymer such as polystyrene (PS) the reactive sites can be passivated to 
accomplish selective growth. SnO2 growth can be blocked up to 50 cycles 
on H-terminated Si(001), and 200 cycles on cured polystyrene and possibly 
beyond. Atomic force microscopy (AFM) results show that SnO2 grown on 
native oxide has a low roughness of 75 pm, while SnO2 grown on H-
terminated Si has a relative higher roughness of 250 pm indicating a 3-D 
growth process. To create SnO2 patterns 20, 50, and 100 ALD cycles of SnO2 
are selectively deposited onto Si native oxide with estimated SnO2 
thicknesses of 1.2 nm, 3 nm and 6 nm, respectively. Samples are then 
etched with SF6 RIE for 30 s to 1 min at room temperature and 200 mTorr. 
AFM results show that SnO2 grid patterns are transferred into the substrate 
with a depth of around 300 nm to 1 µm for all three samples. X-ray 
photoelectron spectroscopy results show that some SnO2 is transformed 
into SnF4 for 100 ALD cycle samples, while all of the SnO2 is transformed 
into SnF4 for 20 and 50 ALD cycle samples. 

9:20am AP+AS+EM+HI+PS+SS+TF-TuM-5 Selective Deposition Two Ways: 
Chemical Bath Deposition of Metal Sulfides on Organic Substrates, T. 
Estrada, Amy Walker, University of Texas at Dallas 

Selective deposition has many technological applications. While area 
selective deposition (ASD) has been widely investigated using atomic layer 
deposition (ALD), there have been few studies of composition-selective 
deposition or ASD in which growth occurs at material boundaries. In this 
talk we shall illustrate these alternate selective deposition methods using 
two examples. 

First, we demonstrate that the composition of tin sulfides is controlled by 
the bath pH and the interaction of sulfur-containing species with -CH3, -OH 
and -COOH terminated self-assembled monolayers (SAMs). On -OH 
terminated SAMs, as the bath pH increases from 10 to 12, the tin sulfide 
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deposited changes from SnS2 to Sn2S3. On -COOH terminated SAMs the 
deposit is S2S3 at pH 10 and SnS at pH 12. In contrast, on -CH3 terminated 
SAMs the deposit changes from SnS at pH10 to Sn2S3 at pH 12. We attribute 
this behavior to a competition between the repulsion of the chalcogenide 
ions by the negatively charged carboxylic acid and hydroxyl terminal groups 
and an increase in chalcogenide ion concentration with increasing bath pH. 

Second, we exploit the interaction of the chalcogenide ions with different 
SAM terminal groups to deposit CuS nanowires at the junction of 
micropatterned -OH/-CH3 terminated SAMs. We term this method 
SEmiconductor Nanowire Deposition On Micropatterned substrates 
(SENDOM). In SENDOM the deposition reaction is kinetically favored on the 
-CH3 terminated SAMs but transport of reactants is preferred on the 
hydrophilic -OH terminated SAM. Thus at short deposition times a 
nanowire forms at the junction of the -OH and -CH3 terminated surfaces. 

9:40am AP+AS+EM+HI+PS+SS+TF-TuM-6 Anatase Crystalline Phase 
Discovery on Ultra-Thin Layer TiO2Films During Low-Temperature Ald on 
Fluorine-Rich Carbon Substrates, Brian Butkus, S. Dabas, C. Feit, J. 
Ganesan, Z. Parsons, X. Feng, P. Banerjee, University of Central Florida 

A novel approach to crystalline anatase phase in atomic layer deposition 
(ALD) of TiO2by deposited on a fluorine-rich carbon substrate using 
titanium (IV) isopropoxide (TTIP) and O2 plasma. In films deposited at 
temperatures as low as 100 oC and with a thickness of only 4 nm, highly 
crystalline anatase phases have been observed. Furthermore, when 
deposited on glass or silicon substrates other than carbon, TiO2 films 
consistently produce amorphous films under these conditions. This talk will 
highlight the unique substrate-driven crystallization of ALD TiO2 and lays 
the ground rules for selective crystallization using surfaces with suitable 
initiation chemistries. 

An ALD process using a Veeco® Fiji Gen2 ALD system was used to deposit 
TiO2 on hydrophobic, polytetrafluoroethylene-coated carbon substrates 
(AvCarb GDS2230 from Fuel Cell Store). Temperatures of the ALD ranged 
from 100 oC to 200 oC, and O2 plasma (300 watts) and water were used as 
oxidants. Target film thickness ranged from 4 nm to 22 nm. To characterize 
the films, Raman, Fourier transform infrared spectroscopy (FTIR), and x-ray 
photoelectron spectroscopy (XPS) were used. AvCarb GDS2230 substrates 
with an O2 plasma as an oxidant resulted in anatase TiO2 films irrespective 
of thickness, even when deposited at temperatures below 100 oC. 
However, the anatase phase is significantly weaker when H2O is used as the 
oxidant. An interfacial layer of ALD Al2O3 suppresses the growth of the 
anatase phase. Data from XPS indicates that Ti-F bonds form at the pre-
deposition stages of films with anatase TiO2. On non-fluorinated substrates, 
where the Ti-F bond does not exist, this structurally distinguishes 
amorphous TiO2. This fluorine on the surface of the carbon paper serves as 
a directing agent1-5 for the application of TTIP to PTFE in a flourolysis 
reaction, which drives the TiO2 to crystallize into anatase films. 

Fluorine doped crystallization in Ti-O systems has been reported in sol-gel 
and hydrothermal approaches to synthesize TiO2 powders.6, 7Here, we 
report the first gas-phase analog of the above reaction mechanism to 
synthesize crystalline anatase TiO2 films. With this strategy, surface 
initiation chemistries can be used to achieve area-selective and in 
situcrystallization of films. 

11:00am AP+AS+EM+HI+PS+SS+TF-TuM-10 Site-selective Atomic Layer 
Deposition: Targeting Electronic Defects, Alex Martinson, Argonne 
National Laboratory INVITED 

While ALD is most commonly employed in uniform conformal growth, 
more selective precursors and processes may allow for more precise 
synthetic strategies including targeted reaction at subtly unique surface 
sites including those that lead to electronic defects. We apply a selective 
hydration strategy to target reaction at the step edges and/or oxygen 
vacancies of rutile TiO2 and In2O3. We computationally and experimentally 
investigate the feasibility of facet- and site-selective ALD through accurate 
asymmetric slab models from which the free energy of adsorption at 
unique surface sites is leveraged to predict step selectivity. Computational 
evaluation of ALD precursor adsorption free energies on multiple 
dehydrated facets further refine the feasibility of a temperature-
dependent selective hydration strategy. Initial experiments of Al2O3 and 
Ga2O3ALD nucleation on TiO2single crystals and MgO ALD on In2O3broadly 
support the computational predictions and strategy. The strategies 
outlined here provide one possible route to selectively target growth at 
structural defects of oxide surface that may also act as surface or interface 
electronic defects. 

11:40am AP+AS+EM+HI+PS+SS+TF-TuM-12 Low Temperature Area-
selective ALD and ALE of Pd, H. Nallan, X. Yang, B. Coffey, John Ekerdt, 
University of Texas at Austin INVITED 

Thin film deposition and etching approaches may be constrained by the 
temperature limits for flexible substrates in roll-to-roll processes.We 
describe a low temperature ALD route to Pd metal film growth at 100 °C 
that uses Pd(hfac)2 and H2.The Pd ALD reaction proceeds in the presence of 
atomic hydrogen; Pd growth nucleates without delay on a Ni metal seed 
layer that catalyzes H2 dissociation.Once nucleated, the evolving Pd surface 
catalyzes H2 dissociation.To generate the Ni seed layer, a NiO film is first 
deposited and reduced with an atomic hydrogen source. The 100 °C ALD of 
NiO using bis(N,N’-di-tert-butylacetamidinato)nickel(II) and H2O as 
coreactants is highly selective on exposed oxide surfaces and blocked on 
organic surfaces.NiO films as thin as 0.5 nm, once reduced to Ni0, 
effectively seed Pd growth through catalytic area activation.NiO reduction 
employs an e-beam heated tungsten capillary at 2.5 × 10-6 Torr H2 that 
generates atomic hydrogen to reduce NiO films at 100 °C. 

In the event non-selective nucleation occurs on passivated regions, we 
describe a low temperature ALE route to etch clusters/islands on the 
passivated regions faster than the desired film.This low temperature route 
exploits the general findings that metal oxides can be etched by a variety of 
vapor phase etchants, such as formic acid – the issue is controlled oxidation 
while minimizing damage to adjacent surfaces.We present a low 
temperature route that involves VUV (115 nm < λ < 180 nm) activation of 
O2 to produce atomic oxygen and ozone, with atomic oxygen being the 
dominant species that oxidizes the near surface region of Pd at 100 
°C.Oxidation extents differ between continuous films and discontinuous 
films enabling the removal of metal islands without significantly etching the 
film.Density functional theory is used to study the adsorption of oxidants 
(O and O3) and describe O diffusion into the films to understand the kinetic 
limitations of the oxidation step. 
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