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8:00am AC+AS+LS-ThM-1 Nuclear Forensics 2020:A Strategic Inflection 
Point, David Willingham, Lawrence Livermore Laboratory INVITED 

The terrorist attacks of 9/11/01 greatly increased the visibility of nuclear 
forensics, as policy makers became increasingly concerned about the 
possibility of well-organized terrorist groups obtaining a nuclear weapon or 
dirty bomb.The Departments of Defense (DOD), Energy (DOE), Homeland 
Security (DHS), and State (DOS), as well as the Federal Bureau of 
Investigation (FBI) and the intelligence community, all play key roles in 
nuclear forensics. DHS, for example, was founded in November 2002 and 
included, from the start, a formal nuclear forensics program in its Science & 
Technology Branch.An August 2007 presidential decision directive 
established the specific roles these agencies would play and formally 
established the National Technical Nuclear Forensics Center (NTNFC) within 
DHS to coordinate planning, integration, assessment, and stewardship of 
the U.S. government's nuclear forensics capabilities. In 2010, the Nuclear 
Forensics & Attribution Act established a National Nuclear Forensics 
Expertise Development Program (NNFEDP) within the NTNFC aimed at 
“developing and maintaining a vibrant and enduring academic pathway 
from undergraduate to post-doctorate study in nuclear and geochemical 
science specialties directly relevant to technical nuclear forensics.”National 
laboratories like LLNL have particularly benefitted from the establishment 
of postdoctoral fellowships. 

In 2021, primary responsibility for nuclear forensics within the US 
Government transferred from DHS to the National Nuclear Security 
Administration (NNSA) within DOE with the issuance of National Security 
Presidential Memorandum 35, National Technical Nuclear Forensics. 
However, the Nuclear Forensics & Attribution Act of 2007 is still in force, 
which defines certain roles for DHS, particularly for stewardship of the 
nuclear forensics’ workforce. Starting with the FY21 budget, there have 
been substantial increases in funding for NNSA for both nuclear forensic 
operations and R&D. However, the exact configuration of the nuclear 
forensics expertise development program(s) going forward is still being 
determined.” 

This talk will highlight some of the outstanding research conducted by our 
DHS postdoctoral fellows, including: 

  

1. Development of RIMS as a tool for in situ analyses for nuclear 
forensics.  

2. Improved determination of half-lives and branching ratios 
important for U rad-chem  

3. Exploration of the use of isochrons for age dating of impure 
samples.   

4. Development of new stable isotopic systems as new sources of 
signatures for nuclear forensics.  

5. Development of rapid methods for dissolving solid samples 
  

8:40am AC+AS+LS-ThM-3 The Non-Integer Occupancy Ground State 
Hypothesis, Miles Beaux, Los Alamos National Laboratory INVITED 

A deeply ingrained and long-standing practice exists for identifying integer 
orbital occupancy ground state electronic configurations for neutral atoms 
of the elements. For certain elements, the identification of the electron 
occupancies of the orbitals in a neutral atom can be a controversial topic, 
instigating heated debate among scientists. The pedagogy of how atomic 
structure and the periodic table are initially taught might serve as a driver 
for this practice. For example, the octet rule is often used to explain the 
most energetically favorable ionic states, similarities in properties of like-
group elements, and the most stable compounds formed by the transfer 
and sharing of electrons. However, the octet rule is also insufficient to 
explain the existence, structure, and properties of transition metal 
elements, including the lanthanides and actinides. 
 

A more fundamental quantum-based understanding of electronic structure 
provides a firm basis for the overall structure of the periodic table. 

Specifically, the octet rule is understood as the stability of completely filled 
s-, and p-orbitals each having electron capacities of two (l=0; ml=0; ms=±½) 
and six (l=1; ml=-1,0,+1; ms=±½), respectively, with each Period, n, having ns 
and np orbitals (except for Period 1, for which no 1p orbital exists). 
Extrapolation of this quantum mechanical underpinning of the Periodic 
Table explains the existence of the d- and f-blocks. The filling patterns of 
the orbitals for elements in the Period Table reveals relative energies of the 
various orbitals. Deviations from the filling pattern are often explained to 
varying degrees of satisfaction by the interplay between Hund’s rule and 
the Aufbau principle for near-degenerate states; the stability of empty, 
half-filled, and completely filled orbitals; and core level screening. As the 
energy landscape for electron orbitals becomes more crowded for higher 
Period elements, the potential for near energy degenerate states increases. 
The potential for quantum superposition of electrons in these near energy 
states leading to effective non-integer orbital occupancies will be discussed 
in the context of observed instabilities in actinide and rare earth elements. 
Experimental and theoretical efforts to investigate this hypothesis for a 
series of Np, Pu, and Am compounds will also be described. 

9:20am AC+AS+LS-ThM-5 Legacy Plutonium at the Hanford Site, Edgar 
Buck, D. Reilly, G. Hall, K. Kruska, L. Liu, S. Triphathi, B. McNamara, A. 
Casella, D. Meier, Pacific Northwest National Laboratory INVITED 

The morphological characteristics of plutonium materials may provide 
information on the processes that were used to create the material; 
however, understanding of the detailed thermodynamic and kinetic 
processes needed to predict the evolution of its particle size distribution, 
crystal habit, and agglomerated state is still evolving. There has been an 
effort to fill this technical gap using an integrated experimental and 
modeling approach for formation of plutonium phases, including oxides 
and oxalates. Several different types of plutonium phases have been 
observed in wastes at the Hanford site, such as the Z9 crib near the former 
plutonium finishing plant and plutonium solids found in the SY102 and 
TX118 tanks. Laboratory experiments have been conducted to probe the 
formation mechanisms for these materials. By examining the preciptiating 
plutonium solids using a combination of in-situ optical microscopy (OM), 
scanning electron microscopy (SEM), cryo-electron microscopy (CryoEM) 
and in-situ transmission electron microscopy (TEM)., we have been able to 
demonstrate the occurrence of non-classical crystalline pathways for 
plutonium particle growth in some instances. 

Understanding crystallization pathways in plutonium materials depends on 
the ability to unravel relationships between the intermediates and final 
crystalline products at the nanoscale, which is a particular challenge with 
radioactive materials. However, these powerful new tools of in-situ and 
cryoEM are providing new insights into the plutonium chemical system. 
The experimental data is helping to parameterize the computational 
modeling with the potential to lead to the development of predictive tools 
for identification. 

11:00am AC+AS+LS-ThM-10 Focused Ion Beam for Spatially Resolved 
Morphological Analysis of Nuclear Materials, Brandon Chung, S. Donald , 
D. Rosas, S. Sen-Britain, V. Som, N. Teslich, A. Baker, Lawrence Livermore 
National Laboratory; A. Ditter, D. Shuh, Lawrence Berkeley National 
Laboratory 

Nuclear forensics requires accurate identification of distinguishing material 
characteristics of interdicted nuclear materials. Local morphological and 
chemical variations in nuclear materials are nearly ubiquitous due to the 
varying provenance, process, and pathways. Conventional analysis using 
bulk nuclear material provides an overall analytical value, but a typical 
nuclear material is heterogeneous, requiring highly spatially resolved 
characterization. Consequently, averaging material characteristics may 
obscure critical forensic signatures resulting from local chemical and 
structural variations. We will describe our efforts to strengthen operational 
and scientific methodologies to employ the focused ion beam-scanning 
electron microscopy (FIB-SEM) on uranium (U) and plutonium (Pu) 
materials for direct three-dimensional (3D) morphological analysis or to 
prepare site-specific material features to obtain spatially resolved 
characterizations using transmission electron microscopy (TEM) and X-ray 
synchrotron spectromicroscopy. Our work shows the internal 
morphological and chemical variations in host nuclear materials provide 
valuable information about the material’s production processes and recent 
environmental exposures. We identified that internal microscopic features 
entrapped within bulk nuclear materials contain trace elements or 
chemical that are attributable to their origin, processing, and 
environmental exposures. 
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11:20am AC+AS+LS-ThM-11 Studying Combined Influence of Alpha 
Irradiation and Dissolved Hydrogen on UO2 Corrosion Using a 
Microfluidic Electrochemical Cell, Jennifer Yao, B. McNamara, M. O'Hara, 
Pacific Northwest National Laboratory; N. Lahiri, Pacific Northwest National 
Lab; E. Ilton, C. Wang, E. Buck, Pacific Northwest National Laboratory 

It is well accepted concept that α-decay is the most important source of 
radiation in the spent nuclear fuel (SNF) after 1,000 years 1. The influence 
of α-irradiation in the presence of dissolved H2 on the corrosion of UO2 can 
provide important information to assess the impact of the long-term SNF to 
the storage environment. However, experiments with bulk amount of SNF 
are expensive owing to the need for shielded hot cell facilities to protect 
researchers from the intense radiation field. To address this challenge, we 
employed a novel invention, particle-attached microfluidic electrochemical 
cell (PAMEC), to investigate UO2 corrosion under different conditions (e.g., 
α-irradiation and H2) at the microscale. Less than 10 µg of UO2 (containing 
1% to 10% 233UO2) powder was mixed with polyvinylidene fluoride (PVDF) 
and carbon black to form the working electrode and included into PAMEC, 
which 233U was used as alpha source to simulate the“aged” spent fuel 2. The 
response of the corrosion potential of a 233U contained UO2 working 
electrode to dissolved H2 in 0.1 M NaClO4 (pH=9.5) will be presented. In 
addition, the 50nm thick Si3N4 detection window on PAMEC allows in situ 
imaging of the corrosion process using the high-resolution imaging 
technique, such as scanning electron microscope (SEM) coupled 
withEnergy-dispersive X-ray spectroscopy (EDS). Furthermore, X-ray 
photoelectron spectroscopy (XPS) was used to determine the oxidation 
state of the UO2 electrode that was exposed to alpha radiation and 
dissolved H2. Our work demonstrates the study of combined influences on 
UO2 corrosion under the conditions that are known to be present in the 
long-term SNF environment by employing a microfluidic electrochemical 
cell. We vision this approach can be widely applied to study the influences 
of conditions that resemble the practical repository environment on SNF, 
while with greatly reduced hazardous risk when performing such 
experiments. 

References: 

(1) Ewing, R. C., Long-term storage of spent nuclear fuel. Nature Materials 
2015,14, 252-257. 10.1038/nmat4226 

(2) Carbol, P.; Cobos, J.; Glatz, J.-P.; Ronchi, C.; Rondinella, V.; Wegen, D. H.; 
Wiss, T.; Loida, A.; Metz, V.; Kienzler, B.; Spahiu, K.; Grambow, B.; 
Quinones, J.; Martínez Esparza, A., The effect of dissolved hydrogen on the 
dissolution of 233 U doped UO 2 (s), high burn-up spent fuel and MOX fuel. 
2005; p 140. 

11:40am AC+AS+LS-ThM-12 A Model to Extract the Size-Dependent 
Surface Structure of Actinide Oxide Nanoparticles, Shinhyo Bang, L. 
Moreau, Washington State University 

Characterization of actinide oxides at the nanoscale presents unique 
challenges due to their radioactivity, high surface area, and inherent 
diffraction broadening due to small grain size. Extended x-ray absorption 
spectroscopy (EXAFS) is an analytical method to investigate atomic-scale 
structural properties that enables their encapsulation and does not rely on 
long-range order. There is a limitation that EXAFS only gives the averaged 
structural information of heterogeneous samples. We aimed to 
deconvolute EXAFS results to extract the surface coordination environment 
of UO2 NPs by proper modeling, and investigate how it evolves with varying 
sizes (1.4, 4.7, 8 nm). The termination effect was used to quantify the 
surface terminating species of UO2 NPs. A higher degree of oxygenation on 
the surface was observed for 8 nm NPs. EXAFS simulation was 
implemented to backtrack the surface structure of these NPs. It was 
observed that the bond contraction due to the surface relaxation effect 
was localized in a few outermost layers of NPs and the surface disorder of 
1.4 and 4.7 nm NPs was significantly enhanced from that of bulk. 
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