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2:20pm AS+EM+SE-TuA-1 Origins of the Emergent Phenomena at Oxide 
Interfaces Studied with Complementary X-Ray Spectroscopic and 
Scattering Techniques, Alexander Gray, Temple University INVITED 

Atomic-level design of complex-oxide heterostructures that exhibit 
functional electronic and magnetic phenomena has become a diverse and 
vibrant subfield of condensed matter physics and material science. Of 
particular interest are the material systems wherein rich physics and 
intricate interplay between various degrees of freedom at the interface 
give rise to functional properties not observed in the constituent materials. 
Detection and characterization of these interfacial properties present a 
unique practical challenge due to the lack of direct yet non-destructive 
techniques that are capable of probing minute changes in the electronic 
and magnetic states at a buried interface with element specificity and 
Ångstrom-level spatial resolution. In this talk, I will discuss several recent 
studies in which we utilized a combination of complementary x-ray 
spectroscopic and scattering techniques to understand the origins of the 
emergent low-dimensional ferromagnetic states in LaNiO3/CaMnO3 and 
CaRuO3/CaMnO3 superlattices. Depth-resolved standing-wave 
photoemission spectroscopy was used to probe the depth-dependent 
changes in the electronic states, while soft x-ray resonant magnetic 
scattering was used to extract the element-specific magnetic profile of the 
interface. The results of the experiments were compared to and 
interpreted using state-of-the-art first-principles theoretical calculations. 

This work was supported by the U.S. Department of Energy, Office of 
Science, Office of Basic Energy Sciences, Materials Sciences, and 
Engineering Division under Award DE-SC0019297. 

3:00pm AS+EM+SE-TuA-3 Multi-Technique Forensic Analysis by Co-
Incident XPS & Raman Imaging, Robin Simpson, P. Mack, Thermo Fisher 
Scientific, UK 

For more than 100 years fingerprint analysis has been ubiquitous in the 
forensic sciences and is still a core method for identifying individuals in 
forensics. The techniques used to analyze fingerprints are either structural, 
for identifying the features of the fingerprints, or chemical, characterizing 
the composition of the deposited material. Many of these chemical 
characterization techniques are destructive to the sample preventing any 
further analysis from being performed or the sample from being preserved 
as evidence for a later date. Here we show the benefits of using XPS to 
analyze fingerprints, where the elemental and chemical state composition 
of a sample can be acquired non-destructively from the top 10 nm of the 
surface. 

In this investigation, we build on our previous work investigating fingerprint 
analysis. In that study, XPS and XPS mapping techniques were utilized to 
identify and characterize the contamination of fingerprints. Fingerprints 
contaminated with TiO2, and PbO deposited on the silicon wafer can be 
chemically mapped and visualized using XPS using principal component 
analysis, PCA. 

In this study, we also discuss other examples of forensic analysis including 
the identification of pharmaceutical substances using complementary XPS 
and Raman analysis. To achieve this an “over the counter” multi-
component analgesic tabletwas crushed to a powder form and deposited 
onto the substrate. The powder is mapped rapidly using XPS imaging and 
the data is processed by PCA. This information was used to identify areas 
for further analysis by high-resolution XPS and Raman. Further Raman 
analysis was used to characterize the composition of the 3 areas of the 
sample and identify the compounds contained in them. These are shown to 
be aspirin, paracetamol, and caffeine through comparison with known 
sample spectra in the OMINC Raman spectral database. 

In the final two examples of forensic analysis workflows in this 
presentation, we discuss the identification and differentiation between 
overlapping ink and paint samples deposited on paper or fabric substrates. 
Raman mapping is used to differentiate between two paint samples that 
have virtually identical chemistry when analyzed via XPS, and rapid XPS 
imaging is used to identify the order of events between the deposition of 
computer-printed ink and handwritten ink from a ballpoint pen. 

3:20pm AS+EM+SE-TuA-4 Comparison of Methods to Quantify Silicone on 
Hair, Michaeleen Pacholski, B. Johnson, T. Case, T. Powell, D. Carsten, J. 
Stratton, The Dow Chemical Company; C. Ji, The Dow Chemical Company, 
China; M. McIvor, N. Goodman, S. Yusuf, M. Upshur, The Dow Chemical 
Company 

Silicone has been used as a conditioning agent on hair for a long 
time.Silicone deposition can produce numerous benefits in reducing the 
coefficient of friction, improving combability and decreasing frizz.It can be 
delivered in multiple ways such as conditioning shampoo, rinse off 
conditioners, leave in conditioners and detangling products.Regardless of 
how it is delivered to the hair surface, the quantification of silicone on hair 
is an important metric for R&D product development and marketing.In a 
large analytical group there are many techniques that can be used 
including XPS, XRF, ICP, GC and IR.Each has different limits of detection, 
amount of sample required, time involved to both acquire and analyze the 
data, etc.A set of samples was generated using both shampoo and rinse off 
conditioner on both brown and bleached hair for a comparison study.The 
amount of silicone varied from low to high levels.Comparison of the 
techniques showed general agreement between all techniques within 
expectations.These experiments can now guide internal work based on the 
needs of the specific project and what instrumentation is available within 
that region. 

4:20pm AS+EM+SE-TuA-7 Progress Towards Atomic Scale Analytical 
Tomography, Brian Gorman, Colorado School of Mines; T. Kelly, Steam 
Instruments, Inc; M. Holtz, Colorado School of Mines INVITED 

Atomic-Scale Analytical Tomography (ASAT) has been recently defined as 
the ability to identify every atom in its place. Specifically, ASAT is the ability 
to determine the isotopic identity and sub-Angstrom position of 100% of 
the atoms in a specific volume. Taking this a step further, ASAT should also 
be able to determine the local electronic structure of these atoms, thus 
giving rise to true 3-D atomic structure / electronic property relationships. 
ASAT datasets of semiconductor nanostructures will reveal the 3-D position 
of individual dopant atoms with pm spatial resolution, the 3-D position of 
nuclear spin isotopes, nanometer scale changes in strain due to structural 
defects and lattice mismatch, the 3-D position of point defects such as 
vacancies, and any electronic band structure changes at all these atomic-
scale features. 

Undoubtedly, ASAT is a lofty metrology goal but is nearly within reach. 
Contemporary metrology techniques such as (Scanning) Transmission 
Electron Microscopy ((S)TEM) are not currently capable of ASAT. (S)TEM 
can image atomic positions with better than 0.01 nm resolution in some 
specimens and tilt-series tomographic imaging can give 3-D information, 
sometimes at atomic resolution. Analytical STEM can be performed at 
atomic resolution in some cases, although identifying a single atom in 3-D 
is only possible in limited specimens and with poor depth resolution. Atom 
Probe Tomography (APT) can provide mass spectral information on 
individual atoms, however, 3-D image reconstruction methods are 
constrained by multiple empirical assumptions and lack of information 
about the specimen that limit the spatial resolution. 

Recently, it was demonstrated that correlative TEM and APT on the same 
specimen can approach ASAT. We used (S)TEM imaging of the specimen 
before and after APT to define the analyzed 3-D volume. 4-D STEM 
diffraction was used to define atom positions within that volume (a dataset 
known as the specimen function) using information about the crystal space 
group, orientation, and lattice parameters. Individual isotopic nuclear spins 
are accurately placed within a semiconductor quantum do to within 0.05 
Anstroms. 

More work needs to be done using correlative TEM and APT to achieve 
ASAT, including demonstrating the ability to capture structural features 
such as interfaces and defects as well as 100% efficiency ion detectors. In 
the near future, ASAT will be achieved through integration of 100% 
efficiency ion detectors, improved data handling algorithms, and 
integration of TEM and APT into a single instrument. 

5:00pm AS+EM+SE-TuA-9 Investigating 2d-Materials Using Correlative 
Spectroscopy & Microscopy, Tim Nunney, R. Simpson, P. Mack, H. Tseng, 
Thermo Fisher Scientific, UK 

Across a wide range of application areas, understanding the chemistry and 
structure of surfaces and interfaces is crucial. In the last fifty years, X-ray 
photoelectron spectroscopy (XPS) has become established as a one of the 
key techniques for measuring surface and interface chemistry, and 
advances in instrumentation have enabled it to keep pace with the 
requirements for both academia and industry. XPS can deliver quantified 
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surface chemistry measurements, and by using depth profiling, an 
understanding of layer and interfacial chemistry, but the limit on spatial 
resolution for XPS can prevent it from determining how the surface 
structure is related to the measured chemical properties. For example, how 
the changing morphology of the surface during a depth profile could 
influence the measured composition would be challenging to determine 
using just XPS. 

Other experimental techniques which are unable to match the surface 
selectivity of XPS are able to provide complementary information to extend 
the data from XPS. Electron microscopy can provide high resolution 
imaging, with elemental composition provided by energy dispersive X-ray 
microanalysis, but without the same surface selectivity seen with XPS or 
Auger electron spectroscopy (AES). This can be a perfect complement to 
XPS analysis, so long as the same points of interest can be identified. 
Molecular spectroscopy, such as FTIR or Raman, can also provide 
complementary information to XPS, albeit with different sampling depths, 
which can be extremely useful to validate measurements or confirm 
particular molecular structures using the wide range of spectral libraries 
available for those techniques. 

In this presentation, we will describe how a correlative approach using 
both surface analysis instrumentation and scanning electron microscopy 
can be used to characterize 2D nanomaterials. Samples of MoS2 grown on 
Si substrates have been investigated using XPS, Raman and SEM to 
determine their composition and structure. To facilitate co-alignment of 
the analysis positions when moving between the instruments, special 
sample carriers and software alignment routines have been developed. 

5:20pm AS+EM+SE-TuA-10 Surface Analysis in Fujifilm Electronic 
Materials Research & Development Laboratory: Applications on Chemical 
Mechanical Planarization, Hong Piao, FUJIFILM Electronic materials USA., 
Inc.; Y. Liang, K. Huang, B. Duong, J. McDonough, Y. Zhang, H. Lee, B. Hu, 
FUJIFILM Electronic materials USA., Inc. 

Chemical mechanical planarization (CMP) is a chemical reaction assisted 
polishing process in the semiconductor manufacturing industry. It has 
played a key role on integrated circuit (IC) manufacturing to anisotropically 
remove overburden material or specific layers in the film stacking and to 
planarize the topography at the wafer surface. Specific slurry formulations 
have been designed towards to the device structure and materials to be 
polished. The surface chemical processes at the interface of the 
wafer/slurry/pad have significant influence on the CMP performance. As 
device geometries are continuously shrinking as well as the introduction of 
new interconnect materials, the technological requirements on CMP 
performance have become more stringent. Thus, in-depth understanding 
of surface chemical processes which occur during polishing remains 
essential to the improvement of slurry design, the development of next-
generation CMP processes and post-CMP cleaning applications. 

Investigations aimed at understanding fundamental mechanisms usually 
employ electrochemical techniques. Surface analysis methods remain 
rather under-utilized in this field, especially when taking into account the 
explosive growth of these surface techniques for the analysis of “nano-
structured” materials in other fields.Surface analysis tools (XPS, Tof-SIMS 
and AFM) at FUJIFILM Electronic Materials U.S.A., Inc. combined with other 
complementary testing methods have already shown great promise as a 
means of achieving fundamental knowledge to the mechanisms involved in 
CMP processes [1]. 

This review continues to highlight the promising role that surface chemical 
analysis methods can and should play in understanding the complex 
interplay that drives design of CMP slurry formulation for contributions to 
the CMP technology. Examples describing the CMP characterization have 
been given in several aspects that are growing in importance: (1) Cu, Co 
and Ru CMP, (2) Defects (organic residues,metal contaminants and 
particles) removal in a post-CMP cleaning process and (3) CMP 
consumables: root cause analysis of pad stains. 
 

[1]Hong Piao, Yannan Liang, James McDonough, Tawei Lin, Hyosang Lee, 
Carl Ballesteros, Eric Turner, Abhudaya Mishra and Richard Wen, 
“Industrial Applications of Surface Science in Chemical mechanical 
Planarization”, The AVS 65th International Symposium, Oct. 21-26, 2018, 
Long Beach, California. 

5:40pm AS+EM+SE-TuA-11 Investigating GeTe as an Ovonic Threshold 
Switch with Spectroscopic and Electronic Techniques, Melissa Meyerson, 
M. Kalaswad, M. King, D. Adams, J. Custer, P. Kotula, M. Rodriguez, S. 
Rosenberg, Sandia National Laboratories 

Ovonic threshold switches (OTS) are a class of two or three terminal 
devices that exhibit a sharp transition between resistive and conductive 
operating regions. This transition is temporary, with the device reverting to 
a resistive state once bias is de-asserted from the device. The volatile 
resistive behavior makes OTS devices very attractive as select devices for 
phase change memory, voltage controlled tunable filters, and other 
applications. Metal telluride thin films show unique temperature 
dependent characteristics that may make them good materials for OTS 
devices. In this study, we examine the effect of annealing temperature on 
the chemical, physical, and electronic properties of GeTe thin films 
including exploring changes in crystallinity, chemical composition, and 
switching behavior. More specifically, X-ray photoelectron spectroscopy 
shows a chemical transition that occurs between 125 °C and 150 °C that 
results in an increase in metallic Ge and decrease in metallic Te relative to 
the concentration of GeTe present. Similarly, X-ray diffraction shows a 
transition from amorphous to crystalline GeTe around 160 °C. The films are 
further characterized with transmission electron microscopy, energy 
dispersive X-ray spectroscopy, and surface electronic measurements 
including ultraviolet photoelectron spectroscopy and inverse photoelectron 
spectroscopy to determine the band gap. 

Sandia National Laboratories is a multi-mission laboratory managed and 
operated by National Technology and Engineering Solutions of Sandia, LLC., 
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under 
contract DE-NA0003525. 

6:00pm AS+EM+SE-TuA-12 Multi-Technique Analysis of Organic and 
Inorganic Semiconductors for Composition and Electronic Information, 
Paul Mack, Thermo Fisher Scientific, UK; M. Modreanu, Tyndall National 
Institute-University College Cork, Ireland 

Photoelectron spectroscopy has been used for many years to analyse the 
elemental and chemical composition of a broad range of industrially 
relevant materials, from polymers to semiconductors.In recent years, with 
the development of novel organic and inorganic semiconductors, there has 
also been an increasing demand to measure electronic parameters 
alongside the elemental and chemical state information. 

In this work, complementary electron spectroscopic techniques were used 
to comprehensively characterise organic and inorganic semiconductors for 
composition and electronic properties.X-ray photoelectron spectroscopy 
(XPS) was used to analyse the elemental and chemical composition of the 
organic semiconductor, P3HT, and a range of ferroelectric films with the 
general formula, HfxZryOz.Ultraviolet photoelectron spectroscopy (UPS) and 
reflection electron energy loss spectroscopy (REELS) were then used 
together to measure the ionisation potential, band gap and electron 
affinities of those samples. 
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