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2:20pm AS+2D+EM+MS+NS+SS+TF-ThA-1 Controlling InP Quantum Dot 
Surface Defects Using ALD-inspired Surface Chemistry and Phosphorus Kα 
and Kβ X-ray Emission Spectroscopy, Nayon Park, University of 
Washington INVITED 

Colloidal InP quantum dots are a leading heavy-metal-free semiconductor 
material for spectral downconversion in current generation display 
technologies and future generation energy efficient LEDs. Achieving the 
brightest and narrowest photoluminescence (PL) relies on the synthesis of 
structurally and electronically defect-free quantum dots. InP quantum dots’ 
high propensity for oxidation and the inherent oxidative defects arising 
from commonly used synthesis methods therefore motivates a systematic 
approach to probe InP oxidation as a function of synthesis and surface 
treatments and correlation with the resultant optical properties. 
Phosphorus X-ray Emission Spectroscopy (XES) presents itself as an 
exceptional tool in this regard. In this talk, I will show recent results from 
computational modeling where we find that native InP surface oxides give 
rise to dark states near the band edge. Replacing the surface indium with 
zinc to form a monolayer ZnO shell results in the reduction of dark states. 
Using ALD-inspired successive ionic layer adsorption and reaction (SILAR), 
we developed the colloidal, layer-by-layer growth strategy of metal oxide 
shells (i.e. ZnO, CdO, GaOx, AlOx) on InP quantum dots at room 
temperature using common ALD precursors (i.e., metal alkyls and water). 
Metal oxide-shelled InP QDs generally show enhanced PL and evidence of 
bulk and local structural perturbations arising from the metal oxide as 
determined by X-ray diffraction and X-ray absorption spectroscopy. 
Further, we explore the impact of these metal oxide interfaces on the PL 
QY and emission linewidth of InP/ZnSe core/shell QDs. Upon growing a thin 
ZnSe shell, we observe improved PL properties, which we hypothesize to be 
attributable to the inhibition of phosphorus migration to the shell due to 
the presence of the metal oxide interlayer, as supported by X-ray emission 
spectroscopy. Taken together, these results suggest a clear path forward in 
the control and design of complex QD interfaces with atomistic insight for 
optoelectronic technologies. 

3:00pm AS+2D+EM+MS+NS+SS+TF-ThA-3 Characterization of MAX Phases 
using a Combination of Micro-spot XPS, HAXPES and C60 Cluster Depth 
Profiling, Kateryna Artyushkova, Physical Electronics USA; M. Anayee, Y. 
Gogotsi, Drexel University 

Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides 
(MXenes) have seen significant increases in the number of research areas 
and publications. MXenes have a unique combination of properties that 
have led to many applications.1 MXenes are usually synthesized by etching 
“A” layers that interleave “MX” layers in the bulk MAX precursors. MAX are 
represented by Mn+1AXn, where M denotes early transition-metals (Ti, V, 
Cr, Mo, etc.), X is N or C, and A is an A-group element such as Al, Si and 
others. During synthesis, impurities and defects may be introduced, which 
significantly impact the properties of the resulting materials. It is therefore 
critical to detect and quantify these defects and impurities. 

X-ray Photoelectron Spectroscopy (XPS) has the advantages of being easily 
quantifiable and providing chemical information such as surface 
termination and oxidation. However, there are many challenges in using 
XPS for analyzing MAX and Mxene. The first is a very small size of MAX, less 
than a few tens of microns. With the development of focused scanning 
micro-probe X-rays, these limitations can be overcome. The other 
challenge is the extreme surface sensitivity of XPS. It is challenging to 
separate surface adventitious carbon and oxygen from possible oxygen 
incorporation in the carbon site. Depth profiling using a monatomic Ar ion 
beam is not suitable as it can introduce damage to the structure of MAX. 

In this work, we are presenting two approaches to address this challenge. 
The first involves the application of Hard X-ray Photoelectron Spectroscopy 
(HAXPES), in which a monochromated Cr X-ray source is used to probe ~3 
times deeper than a soft Al X-ray. The second utilizes a cluster ion gun 
source, such as C60, for damage-free depth profiling through individual 
MAX particles using ~8μm X-ray spot for probing if oxygen is present in the 
MAX structure. 

 
 

3:20pm AS+2D+EM+MS+NS+SS+TF-ThA-4 Unusual Trend in Thermal 
Stability of Alanine Different Ni Surfaces, J. Ontaneda, Queen Mary 
University of London, UK; R. Grau-Crespo, University of Reading, UK; Georg 
Held, Diamond Light Source, UK 

Chirally modified heterogeneous catalysts promise massive savings of cost 
and toxic waste in the production of enantiopure precursors for high-value 
chemicals such as pharmaceuticals, fertilizers, or fragrants [1]. A key aspect 
is the thermal stability of chiral modifiers, which generally are chiral 
organic molecules bound to a chemically active metal surface. The 
enantioselective hydrogenation of methylacteoacteate (MAA) is a topical 
reaction, which is catalysed by nickel modified with chiral carboxylic acids, 
such as alanine, tartaric acid, or aspartic acid [2]. The components of this 
catalytic system have been investigated using various surface sensitive 
techniques [3,4,5]. Here we present a study of the thermal stability of 
alanine on the three most common Ni surfaces, {111}, {100}, and {110}, 
using synchrotron-based temperature-programmed photoelectron 
spectroscopy and X-ray absorption spectroscopy. In contrast to common 
experience with smaller molecules, alanine is more stable on the more 
open {110} and {100} surfaces compared to {111}. Comparison with a 
detailed DFT study identifies structural and electronic effects that play a 
role in this unusual behaviour. 
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3:40pm AS+2D+EM+MS+NS+SS+TF-ThA-5 Correlative Theoretical and 
Experimental Study of the PC | X Interfacial Bond Formation (X = TiN, AlN, 
TiAlN) During DC Magnetron Sputtering, Lena Patterer, P. Ondračka, D. 
Bogdanovski, S. Karimi Aghda, J. Schneider, Materials Chemistry, RWTH 
Aachen University, Germany 

Due to their outstanding oxidation and wear resistance, cubic (Ti,Al)N is 
widely used as protective coatings on forming and cutting tools. These 
characteristics make (Ti,Al)N also an attractive candidate for the protection 
of polymer components. The composition-induced changes in the 
interfacial bond formation of DC magnetron sputtered TiN, AlN, and 
Ti0.25Al0.25N0.5 onto polycarbonate (PC) substrates are systematically 
investigated by correlating theory and experiment. In order to simulate the 
sputtering condition by ab initio molecular dynamics, a periodic structural 
model of bulk PC consisting of 394 atoms was bombarded by several Ti, Al, 
and N atoms with a kinetic energy of 1 eV. While both Ti and N atoms show 
high reactivity towards all functional groups of the polymer during the 
surface bombardment, Al atoms selectively react only with the carbonate 
group of PC or other reactive functional groups that have formed during 
previous bombardment events (e.g. C-N groups). At the PC | TiN and PC | 
TiAlN interfaces, Ti and N contribute equally to the interfacial bond 
formation, whereas the PC | AlN interface is defined mostly by C–N groups 
with Al-rich clusters forming on top of these groups. X–ray photoelectron 
spectroscopy data of the PC | X interfaces (X = TiN, AlN, TiAlN) show a very 
good agreement with the above-discussed predictions as the formation of 
C-N, C-(Ti,Al), and (C–O)–(Ti,Al) bonds is experimentally verified. This shows 
that the here employed computational strategy enables predictions of the 
interfacial bond formation between polycarbonate and metal nitrides, and 
it is reasonable to assume that the here proposed research strategy can be 
readily adapted to other polymer | inorganic material interfaces. 

4:00pm AS+2D+EM+MS+NS+SS+TF-ThA-6 Using Resonant Photoemission 
Spectroscopy to Probe the Electronic Structure of Complex Oxides with 
Elemental and Orbital Specificity, Jessica McChesney, D. Fong, H. Hong, 
Argonne National Laboratory, USA 

Understanding the role of defects and interfaces is necessary in order to 
realize many of the promising novel properties of complex oxide 
heterostructure devices. To this aim, we employ resonant angle-resolved 
photoemission spectroscopy to probe the electronic structure with 
elemental and orbital specificity of complex oxide heterostructure 
LaTiO3/SrTiO3 (LTO/STO).Combining these spectroscopy measurements 
with in-situ growth characterization we are able to determine the 
minimum thickness required to achieve high quality heterostructures with 
abrupt interfaces and to correlate the formation with the 2DEG with the 
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interface termination LTO/STO vs STO/LTO.In addition, we explore the role 
of oxygen vacancies in formation of the 2DEG on the bare substrate and 
reveal that contrary to expectations, the 2DEG is Ti4+ in character while the 
oxygen defects are Ti3+ in character. 
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