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1:40pm AS+CA+EL+EM+LS+SE+SS-MoA-1 Hard Targets: Developing Tools 
for Quantitative HAXPES, David Cant, National Physical Laboratory, UK
 INVITED 

‘Soft’ x-ray based XPS, using aluminium or magnesium anodes, has been a 
workhorse of surface analysis labs for decades. Over this time, substantial 
efforts have been made in the development of tools such as sensitivity 
factors, transmission function corrections, physical parameter databases, 
simulation software, interpretation methods, and more. Thanks to the 
existence of such tools, the data obtained from ‘soft’ XPS, with careful 
analysis, can provide a strong, quantitative understanding of samples in 
terms of the relative concentration of elements and their chemistry within 
the topmost ~10 nm of material. Nevertheless, sometimes 10 nm is not 
enough. 
 

 
 
Until recently, XPS of materials beyond this topmost region of the surface 
would require either destructive depth profiling of the sample or the use of 
synchrotron light sources; the former carries its own metrological 
challenges, as well as ruining a sample, while the latter introduces a 
plethora of complexities which render calibration difficult. However, recent 
developments in the design of instruments utilising higher-energy x-ray 
anodes have begun to make HAXPES instruments more readily available in 
the lab. This allows far more analysis of samples that previously might have 
been restricted to synchrotron studies; for example in non-destructive 
depth-profiling of coated samples with overlayers beyond the ~10 nm limit 
of ‘soft’ XPS. Yet with new instruments come new issues; transmission 
function calibrations that work for the 0 - 1400 eV energy range are not 
much use for spectra that stretch some KeV beyond, and relative sensitivity 
factors for each new photon energy and instrument geometry are needed, 
particularly given the cornucopia of new core levels made available, and 
the breadth of sensitivity at higher photon energies. 
 
 
Here we discuss progress towards more quantifiable XPS and HAXPES 
measurements. A method for the calculation of theoretical sensitivity 
factors is described, applicable to instruments of any geometry for x-ray 
sources in the energy range 1.5 - 10 keV, and their validity for depth-
profiling of samples well beyond the depths achieved by aluminium sources 
is demonstrated. We discuss developments in straightforward 
transmission-function calibrations of standard aluminium sources by the 
use of a mathematically-defined reference spectrum, as well as progress 
towards transmission calibration of higher energy sources for which 
reference spectra do not yet exist. From these developments, the 
possibility of a ‘universal’ calibration and sensitivity scheme for both lab- 
and synchrotron-based HAXPES systems at a range of energies is proposed. 
 

2:20pm AS+CA+EL+EM+LS+SE+SS-MoA-3 Process-Induced Reactions in 
Interfaces of High-K/Metal Gate Stacks Studied Using HAXPES, Thierry 
Conard, A. Vanleenhove, F. Mascarenhas, I. Hoflijk, I. Vaesen, IMEC, 
Belgium 

While high-energy photoemission has been in use for decades, it has 
remained mostly confined to synchrotron radiation facilities. Synchrotron 
beamlines allow a large flexibility regarding measurement conditions and 
set-up but are inconvenient in the framework of technological 
developments, where routine analysis of material systems is needed. The 
recent availability of performant lab-scale high-energy photoemission 
spectrometers [1,2,3] alleviate these beamline limitations and thus allow to 
investigate technological relevant models. 

In this presentation, we will demonstrate the potential of HAXPES lab-scale 
systems regarding application in the semiconductor industry, and more 
specifically regarding the chemical analysis of interfaces. We will 
demonstrate the investigation of modifications in layer chemistry of buried 
layers in multi-layer high-k/metal gate stacks upon thermal treatments. 
Annealing is one of the critical stages during manufacturing of gate stacks 

and chemical modification at interfaces play a major role in device 
performance. With this presentation we will present results on simple 
stacks such as TiN/HfO2/SiO2/Si as well as more complex stacks such as 
TaN/TiAl/TiN/HfO2/SiO2/Si or W/TiN/HfO2/SiO2/Si. Results will be presented 
obtained both with Cr Kα (5.4 keV) and Ga Kα (9.25 keV) HAXPES. The 
respective advantages of these two energies will be discussed in terms of 
chemical identification, sensitivity and quantification. 
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2:40pm AS+CA+EL+EM+LS+SE+SS-MoA-4 Quantification and Reporting of 
XPS Data Taken Under Near Ambient Pressure Conditions – Chances and 
Challenges in Acquision Speed, Beam Damage, Sensitivity, Reliability, 
Reproducibility and Repeatability, P. Dietrich, Andreas Thissen, SPECS 
Surface Nano Analysis GmbH, Germany 

Over the last fifty years significant developments have been done in 
photoelectron spectroscopy instrumentation and thus opened new fields 
of application. Especially XPS or ESCA developed into a standard analytical 
method in many labs for surface and material characterization. The number 
of users and the number of publications using XPS data has tremendously 
increased. But as a side effect it is a challenge to keep the level of 
knowledge about the method and correct data interpretation at a high 
level for all users of these data. 

To avoid errors in the interpretation of XPS data instrument manufacturers 
put efforts inside their instruments and software packages to help and 
guide the user through data acquisition, data quantification and 
interpretation and finally also through data reporting. By this data can be 
made compatible with existing ISO and other community standards. But 
even more, data quality becomes transparent also in times of open source 
publications and open data repositories. 

For the last ten years XPS under near ambient pressure conditions (NAP-
XPS) has gained significant attention in the XPS community. The technique 
allows for standard analysis of samples under pressures up to about 50 
mbar. This opens XPS to liquids, solid-liquid interfaces, gas-solid-interfaces, 
gas-liquid-interfaces. New fields like operando studies on electrochemical 
systems, corrosion experiments, analysis of food samples, but also studies 
of biological samples have been added to the XPS portfolio. The 
background gas pressure in such experiments is beneficial for the analysis 
of materials, because it avoids beam damages and degradation due to UHV 
conditions and also enables true non-destructive analysis of all types of 
degassing samples and insulators. On the other hand, the absorption of X-
rays in the gas atmosphere, the emitted electrons from the gas molecules 
and inelastic electron scattering in the gas influences the spectral 
distribution of photoelectrons significantly strongly influencing elemental 
identification, quantification and detection sensitivity. This presentation 
summarizes the special challenges in the interpretation of NAP-XPS data 
and uses several reference samples (mostly published in Surface Science 
Spectra) from different fields of application. Basic concepts for 
identification and quantification of spectral features are demonstrated. 
Finally an outlook is presented how close NAP-XPS is to be a routine 
metrology technique. 

3:00pm AS+CA+EL+EM+LS+SE+SS-MoA-5 The Modern Spectrometer – 
Reliable, Repeatable and Relatable, S. Coultas, J. Counsell, Kratos 
Analytical Limited, UK; Christopher Moffitt, Kratos Analytical Inc.; C. 
Blomfield, Kratos Analytical Limited, UK 

The outlook of the XPS community has changed significantly in the last 
decade. The technique has seen constant steady growth due to the rise in 
surface-based material research – energy storage and harvesting are two 
such disciplines. This growth of new first-time users needs to be 
considered, as does the way in which faculties manage centralised 
analytical facilities. This has led to a change in the philosophy of the 
workflow of an XPS spectrometer and how the user interacts with the 
“tool”. In this modern era of devolved data and non-expert users the 
spectrometer itself needs to be reliable, repeatable and relatable. Reliable 
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– delivers on the promise, Repeatable – consistency with data acquisition 
and processing, Relatable – simple, easy-to-use, non-expert. This new 
philosophy creates new challenges for manufacturers who need to deliver 
the best spectrometer for this new market whilst at the same time 
maintaining the expectations and beliefs of the traditional analyst. 

The discussion will focus on defining the issues of the current XPS outlook 
and providing practical, workable solutions. The following topics, when 
combined together, will illustrate the holistic design principles of a modern 
spectrometer: Simplified workflow, standard methods, automated 
routines, parameter logging, calibrated and up-to-date sensitivity factors, 
processing operators, data output and report generation. 

3:20pm AS+CA+EL+EM+LS+SE+SS-MoA-6 Modulation with Atomic 
Number of the Shirley Background of the Photoemission Spectra of 
Transition Metals, Alberto Herrera-Gomez, D. Guzman-Bucio, CINVESTAV-
Queretaro, Mexico; D. Cabrera-German, M. Mayorga-Garay, O. Cortazar-
Martinez, J. Torres-Ochoa, A. Carmona-Carmona, CINVESTAV-Unidad 
Queretaro, Mexico; M. Gonzalez Reyna , UNAM-Mexico; V. Crist, XPS 
Library; C. Ospina-Ocampo, Cinvestav-Unidad Queretaro, Mexico 

The 2p photoemission spectra of the first-row pure transition metals are 
similar enough to each other to display a meaningful progression, through 
the row, of the characteristics of the peaks and background [1]. The same 
goes for the 3d spectra of the second-row pure transition metals [2]. In 
addition, there are similarities between the behavior of the peak and 
background parameters of these two rows, such as the dependence of the 
intensity of the Shirley background with atomic number. The Shirley 
background is largest for the first column (3B column of the periodic table), 
decreases to a local minimum to then rise again to a local maximum on the 
seventh column (8B). The large value of the Shirley background for the first 
column elements is correlated with the large asymmetry of the main peak 
and the presence of strong intrinsic plasmons. This correlation might be 
due to a similar physical origin [3] The local maximum in the 8B column 
coincides with the maximum of permutations of the valence band, as 
previously pointed out by Castle and Salvi [4]. The physical mechanism of 
these phenomena will be discussed. 

[1] D. Cabrera-German, G.-B. Dulce-Maria, M. Mayorga-Garay, O. Cortazar-
Martinez, J.-A. Torres-Ochoa, A. Carmona-Carmona, A. Herrera‐Gomez, 
Peak and background parameters of the 2p core level of the pure first row 
transition metals, J. Vac. Sci. Technol. A. (2022) (in progress). 

[2] D.-M. Guzman-Bucio, A. Carmona-Carmona, M.A. Gonzalez-Reyna, A. 
Herrera‐Gomez, Peak and background parameters of the 3d core level of 
the pure second row transition metals, J. Vac. Sci. Technol. A. (2022) (in 
progress). 

[3] A. Herrera-Gomez, D. Cabrera-German, A.D.A.D. Dutoi, M. Vazquez-
Lepe, S. Aguirre-Tostado, P. Pianetta, D. Nordlund, O. Cortazar-Martinez, A. 
Torres-Ochoa, O. Ceballos-Sanchez, L. Gomez-Muñoz, L.G.M. Herrera-
Gomez, Alberto., Dagoberto Cabrera-German., Anthony D. Dutoi., Milton 
Vazquez Lepe., Servando Aguirre-Tostado., Piero Pianetta., Dennis 
Nordlund., Orlando Cortazar-Martinez., Alejandro Torres-Ochoa., Oscar 
Ceballos-Sanchez., Intensity modulation of the Shirley background of the Cr 
3p spectra with photon energies around the Cr 2p edge, Surf. Interface 
Anal. 50 (2018) 246–252. https://doi.org/10.1002/sia.6364. 

[4] J.E. Castle, a. M. Salvi, Interpretation of the Shirley background in x-ray 
photoelectron spectroscopy analysis, J. Vac. Sci. Technol. A Vacuum, 
Surfaces, Film. 19 (2001) 1170. https://doi.org/10.1116/1.1378074. 

4:00pm AS+CA+EL+EM+LS+SE+SS-MoA-8 Thin Film Analysis by XPS: 
Quantitative Modeling of Sputtering and Depth Profile Data, Lev Gelb, A. 
Walker, University of Texas at Dallas 

We present progress in the simutaneous quantitative extraction of both 
compositional profiles and sputtering parameters from XPS depth-profiles 
of multilayer films. Depth-profile data are routinely processed to provide 
“fractional composition vs ion dose” profiles, but such profiles suffer from 
significant drawbacks: they are constructed assuming that the sample is 
homogeneous in the probed region, which is not true near interfaces, and 
it is not normally possible to precisely convert between units of ion dose 
and depth. 

Our approach is to first construct analytical models for both the sample 
structure and for the erosion process, and then to determine the model 
parameters (layer thicknesses, interfacial widths, material removal rates, 
etc.) most consistent with the observed apparent fractional composition 
profiles. This is done numerically, by comparing simulated and observed 
apparent composition profiles in a maximum-likelihood framework using 
an evolutionary optimization algorithm. The only required inputs to the 

calculation are the “fractional composition” profiles (above) and models for 
the inelastic mean free paths (IMFPs) for each tracked peak. 

We demonstrate the basic idea by analysis of using synthetic data. The 
resolution of the extracted depth profiles improves when additional peaks 
are incorporated in the analysis. Small deficiencies in the structure or 
sputter model do not strongly affect the extracted compositional profiles, 
while errors in the IMFPs used have much larger effects. We then discuss 
promising results obtained from the analysis of experimental data from 
some well-characterized samples. Finally, we discuss improvements and 
extensions of this modeling/analysis framework. The sputtering model can 
be extended to include in-sample mixing and chemical reactions. The 
scheme can also be extended to use complete spectra as input. 

4:20pm AS+CA+EL+EM+LS+SE+SS-MoA-9 Understanding and Controlling 
Sample Degradation on Modern XPS Spectrometers, David Morgan, 
Cardiff University, UK 

As XPS systems become ever more user-friendly, with “load-point-click-
report” type automated analysis possible, the expertise in understanding 
samples, their handling and ultimately identifying and dealing with 
experimental artefacts is slowly eroding. 
 
It has been previously shown that developments in the charge 
compensation methodology employed, especially the use of dual electron-
ion compensation systems, can cause significant damage to a range of 
inorganic and organic materials [1,2] and in some cases a synergistic effect 
from the x-rays on the degradation rates can be observed. 
 
Herein, the degradation effect using x-rays and a dual beam neutraliser are 
explored and discussed, and a delineation of the effects from both 
neutraliser and the x-rays on a series of polymeric, organic and inorganic 
materials are presented, together with methodologies to mitigate, or at the 
very least minimise, such analysis induced damage and propose that which 
we believe to be a better way of estimating sample damage on a per-
system basis than those previously published [3]. 

[1] L. Edwards, P. Mack and D. J. Morgan, “Recent advances in dual mode 
charge compensation for XPS analysis”. Surface and Interface Analysis, 51 
(2019) 925-933 
[2] R. McLaren, G. Owen and D. J. Morgan, “Analysis Induced Reduction of 
a Polyelectrolyte”, Results in Surfaces and Interfaces, (2021) 100032 
[3] G. Beamson and D. Briggs, “High Resolution XPS of Organic Polymers: 
The Scienta ESCA300 Database,” Wiley, Chichester, 1992. 

4:40pm AS+CA+EL+EM+LS+SE+SS-MoA-10 XPS Intensity Calibration and 
Validation Using Polyethylene and Ionic Liquids, Benjamen Reed, National 
Physical Laboratory (NPL), UK; J. Radnik, Bundesanstalt für 
Materialforschung und -prüfung (BAM), Germany; A. Shard, National 
Physical Laboratory (NPL), UK 

For quantitative X-ray photoelectron spectroscopy (XPS) analysis, it is 
necessary to know the energy-dependent spectrometer response function 
('transmission function') of the XPS instrument. There is a huge variability 
of transmission functions between different laboratories and instruments, 
as well as different acquisition parameters for the same instrument. For 
comparable and reproducible analyses, there is a necessity for a 
standardised method of intensity calibration and validation. 

For intensity calibration, the simplicity of polyethylene’s inelastic 
background can be described by a mathematical function that can be easily 
reproduced, is continuous, and noise-free. Instrument geometry must be 
considered due to the anisotropic emission of photoelectrons and the 
polarization of monochromated x-rays in many commercial XPS 
instruments. We therefore present geometry-corrected reference spectra 
of polyethylene for Al Kα instruments which are traceable to gold, silver, 
and copper reference spectra from the National Physical Laboratory (NPL). 
Polyethylene does not require in-situ sample preparation needing only to 
be scraped with a scalpel before measurement, making it a suitable 
method for instruments without an ion-sputtering source. VAMAS study 
A27 determined that over a kinetic energy range of 180 eV to 1500 eV, 
intensity calibration with polyethylene deviates by ±6.5% compared to 
previous NPL method using precious metals. Deviations less than 5%, and 
as low as 1%, are attainable with careful data acquisition from well-
maintained instruments. This intensity calibration method is now being 
developed as an international standard under the auspices of ISO TC201 
“Surface Chemical Analysis”. 

Once an instrument has been intensity corrected, it is good practice to 
validate the calibration by measuring a homogeneous sample of known 
composition. Ionic liquids have several notable properties that make them 
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an ideal material for XPS analysis. Ionic liquids exhibit a high degree of 
lateral and depth homogeneity, are UHV compatible, and have well-
defined stoichiometries. When deposited in recessed sample holder, the 
meniscus of an IL will be perfectly flat meaning that there are no 
contributions from sample topographic effects. 1-propyl-3-methyl-
imidazolium-bis(trifluoromethyl sulfonyl)imide (Solapur®) is one such IL 
candidate, with core levels up to ∼800 eV binding energy, making it apt for 
verifying the quantification of light elements, especially for organic 
materials. Here we present spectra for Solapur® ionic liquid and discuss 
how they may be used to validate an XPS intensity calibration. 
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