

Fig. 1. DRCLS spectra at 2keV, 5 keV, 11 keV, and 18 keV, (R_B:50 nm, 190 nm, 680 nm, 1600 nm, respectively) before breakdown.

Fig. 2. Resistivity vs. applied voltage (electric field). Dielectric breakdown took place at 150V (300kV/cm). Insert figure shows the SEM image of the microwire bias setting

Fig. 3. HSI maps of $A_{2.35eV}/A_{NBE}$ at $E_B=7 \text{ keV}$ ($R_B=320 \text{ nm}$) in region between contacts of the microwire at different applied bias.

Fig. 4. DRCLS spectra taken at $E_B=10 \text{ keV}$ ($R_B=600 \text{ nm}$) on different spots through contacts and between contacts after breakdown compared with before breakdown.

Fig. 5. Deconvolved areas of 2.0 eV (V_{Zn} cluster) and 2.35 eV (Cu_{Zn}) normalized by the NBE area at different spots through contacts and between contacts after breakdown compared with before breakdown. For E_B =5 keV, R_B =190 nm without Pt contact. Average concentrations are 17% and 15% of before breakdown, respectively

Fig. 6. ZnO Monte Carlo excitation rates vs. depth for beam energies $E_B = 1.5-18.0$ keV for controllable depth $R_B < 50$ to > 1600 nm. Insert table shows the R_B vs E_B at each beam energy.